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PREFACE

The present dissertation describes my work as a PhD student at the qLEAP center

for theoretical chemistry, located in the department of chemistry of Aarhus university,

Denmark. I joined the qLEAP center first as a research assistant in September 2013

and started my PhD under the supervision of Poul Jørgensen and Kasper Kristensen

in February 2014.

The way I tried to write this thesis is to make it possible for people with different

backgrounds to get insights about my work as a PhD student. The introduction

should be general enough for a non-scientific reader to get an idea of what quantum

chemistry and electronic-structure theory are about and a very broad introduction to

the goal of my research. Chapter 2 has been designed to introduce some of the most

important concepts in electronic-structure theory which correspond to the starting

point of my work. This chapter and the following have been written for interested

readers with a strong mathematical background and some knowledge of quantum

mechanics. Chapters 3 and 4 present the theoretical methods developed (in part)

during my PhD with emphasis on the fundamental ideas rather than the technical

details. Some of the most important results are also presented in those chapters. All

in all, this thesis should provide a strong introduction to my work as a PhD student

and hopefully enable the reader to understand the scientific papers listed below and

collected as appendices.

Miscellaneous

Atomic units (a.u.) are used throughout this thesis unless stated otherwise. A brief

comparison of the atomic unit system and the international system (S.I.) is given in

table 1 for the units relevant to this thesis.

The theory developments presented in parts of chapters 3 and 4 and in the scientific

articles gathered in appendix B have been implemented in the LSDalton program.1,2

All molecular and orbital graphical representations have been generated using the
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Table 1: The atomic unit (a.u.) system compared to the international system (S.I.). Abbre-

viations: kilogram (kg), Coulomb (C), second (s), Joule (J), meter (m).

Symbol Quantity Value in a.u. Value in S.I. units

me Electron mass 1 9.110× 10−31 kg

e Elementary charge 1 1.602× 10−19 C

t Time 1 2.419× 10−17 s

h Planck’s constant, (2π~) 2π 6.626× 10−34 J·s
a0 Bohr radius (length) 1 5.292× 10−11 m

EH Hartree (energy) 1 4.360× 10−18 J

USCF Chimera package.3 Chimera is developed by the Resource for Biocomputing, Vi-

sualization, and Informatics at the University of California, San Francisco (supported

by NIGMS P41-GM103311).
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2 CHAPTER 1. INTRODUCTION

Most of the matter around us (except for dark matter and dark energy) is made of

atoms, including ourselves, all the living beings, the air, the earth, but also the other

planets and the stars like the sun. An atom is roughly 100 000 times smaller than a

human cell which is already 100 000 times smaller than the human body. Atoms are

made of even smaller particles called electrons, protons and neutrons. The protons

and neutrons form the atomic nucleus which is positively charged and interact with

the electrons (negatively charged) through the electromagnetic force (see figure 1.1).

The electromagnetic force is also responsible for the interactions between the atoms

which can be arranged in infinitely many combinations to form the molecules and in

fine, the macroscopic objects that surround us. Even though we are made of atoms,

the laws of physics that we are used to (classical mechanics), do not seem to apply at

the atomic scale (10−10 m) which instead is governed by quantum mechanics.

One of the fundamental equations of quantum mechanics is the (time-dependent)

Schrödinger equation,

HΦ = i∂tΦ, (1.1)

which can be used to describe the behavior of objects like atoms and molecules. The

two important quantities in eq. (1.1) are the Hamiltonian H and the wave-function

Φ. The Hamiltonian is a mathematical operator associated with the energy of the

system considered. It is used to describe both the energy resulting from the motion

of the particles (the kinetic energy) and the interactions between those particles (the

potential energy). The wave-function, on the other hand, is a mathematical object that

can be used to represent the distribution of the particles in the system. Unfortunately,

it is impossible to solve eq. (1.1) exactly for atoms and molecules of practical interest.

A whole part of theoretical or quantum chemistry is therefore concerned with the

design of tools in the form of mathematical models and computer programs that

provide approximate solutions to eq. (1.1) and help chemists in their everyday tasks by

substituting some of the chemical or physical experiments with in silico experiments,

i.e., computer simulations or calculations.

In many cases the systems to be described by the Schrödinger equation are “sta-

ble” in time and their wave-function can be factorized (i.e., separated) into a time-

dependent and a time-independent part. This form of the wave-function leads to the

time-independent Schrödinger equation,

HΨ = EΨ, (1.2)

where E is the energy of the system in the stationary state described by the time-

independent wave-function Ψ and subject to the physical interactions contained in

the Hamiltonian H. In the case of molecular systems, and when relativistic effects

and external perturbations are ignored, the Hamiltonian can be decomposed into the

following contributions, (see also figure 1.1).

• The kinetic operator for all nuclei, TN ,
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electrons (-e)

protons (+e)

neutrons (0)

nuclei (+)

electromagnetic
repulsion, V

ee

electromagnetic
repulsion, V

NN

electromagnetic
attraction, V

eN

Figure 1.1: Schematic representation of the particles and the interactions present in atoms and

molecules. The double-headed arrows represent interactions and the charges of the particles

are given in parentheses.

• the kinetic operator for all electrons, Te,

• the electrostatic potential attraction between electrons and nuclei, VeN ,

• the electrostatic potential repulsion between electrons, Vee,

• and, the electrostatic potential repulsion between nuclei, VNN .

Note that we do not consider the interaction between protons and neutrons inside

the nuclei. Instead, we take the nuclei to be point charges of masses and charges

corresponding to the number of protons and neutrons they contain.

Even though it is now time-independent, eq. (1.2) is still too complicated to be

applied to molecules containing several atoms since the motion of a given particle

(electron or nucleus) is affected by the instantaneous position of all the others. To

reduce the complexity of eq. (1.2), we introduce one of the most important approxi-

mation in chemistry, the Born–Oppenheimer (BO) approximation, which consists in

decoupling the motion of electrons and nuclei based on the difference between their

masses. Since the nuclei are much heavier than the electrons, it can usually be as-

sumed that the electrons will adapt almost instantaneously to the displacement of the

nuclei and their respective motion can thus be decoupled. The wave-function is then

written as a product of a nuclear and an electronic part, Ψ = ΨNΨe, and the impact

of the nuclear motion on the electronic wave-function is neglected. This leads to two

new Schrödinger equations, one for the nuclei and one for the electrons. In this thesis

we will focus on the electronic Schrödinger equation,

HeΨe = EeΨe, (1.3)
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He = Te + VeN + Vee + VNN (1.4)

where the position of the nuclei are fixed at a given molecular geometry due to the

BO approximation and therefore the inter-nuclear interaction VNN is just an additive

constant.

It is evident that the complexity of eq. (1.3) increases with the number of electrons

since it results in more and more interactions to consider at the same time. In the past

hundred years, (since the beginning of quantum mechanics), physicists and chemists

have designed a wide range of models to solve the electronic Schrödinger equation

in which the complexity of the solutions (the computational complexity) is usually

correlated with the quality or the accuracy of those solutions. For that reason, very

accurate solutions to the electronic Schrödinger equations have only been obtained for

rather small molecules.

As a PhD student, my goal was to contribute to the design of new accurate models

that solve the electronic Schrödinger equation for systems as large as proteins, i.e.,

from a few hundreds to a few thousands atoms. In the following chapter, some of

the fundamental concepts of molecular electronic-structure theory which are relevant

to this work are summarized, while an overview of the methods developed (partly)

during my PhD is given in chapters 3 and 4.



CHAPTER
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6 CHAPTER 2. ELECTRONIC-STRUCTURE THEORY

The content of this chapter is based on Ref. 13, except for section 2.5 for which

adequate references are given therein.

2.1 The electronic Schrödinger equation

In this thesis we consider solutions to the time-independent electronic Schrödinger

equation. Using Dirac’s bra-ket notation we have,

H |Ψ〉 = E |Ψ〉 , (2.1)

where we have omitted the e subscripts for clarity [compared to eq. (1.3)], i.e., E is the

electronic energy, Ψ is the electronic wave-function and H is the non-relativistic molec-

ular electronic Hamiltonian under the BO approximation. In the second-quantization

formalism the spin-free molecular Hamiltonian is given by,

H =
∑

pq

hpqEpq +
1

2

∑

pqrs

gpqrsepqrs + hnuc, (2.2)

where

Epq = a†pαaqα + a†pβaqβ (2.3)

is a singlet excitation operator. aqσ annihilates an electron of spin σ from a spatial

molecular orbital (MO) φq, while a†pσ creates an electron of spin σ in MO φp (in this

thesis only real MOs are considered). Those elementary operators are called creation

and annihilation operators and they follow the anti-commutation relations required to

satisfy Pauli’s exclusion principle (i.e., the change of sign of the wave-function under

exchange of two electrons). The two-electron singlet excitation operator can then be

written as,

epqrs = EpqErs − δqrEps, (2.4)

where δqr is the Kronecker function. The one- and two-electron integrals used in the

definition of the Hamiltonian in eq. (2.2) are given by,

hpq =

∫
φp(r)

(
−1

2
∇2 −

∑

I

ZI
rI

)
φq(r)dr, (2.5a)

gpqrs =

∫∫
φp(r1)φq(r1)

1

r12
φr(r2)φs(r2)dr1dr2, (2.5b)

hnuc =
1

2

∑

I

∑

J 6=I

ZIZJ
RIJ

, (2.5c)

where ZI , rI , and RIJ denote the nuclear charge, the electron-nuclear distance and

the inter-nuclear distance, respectively, while r12 corresponds to the inter-electron

distance. By comparison with eq. (1.4), we note that, Te and VeN are included in hpq,

Vee corresponds to gpqrs, while VNN is equivalent to hnuc.
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Figure 2.1: The systematic approach to the exact solution of the Schrödinger equation by

successive improvements in the one- and N -electron spaces. (Replicated from Figure 5.1 in

Ref. 13).

The spatial MOs are usually expressed as a linear combination of basis functions

χµ,

φp(r) =
∑

µ

Cµpχµ, (2.6)

where Cµp is an MO coefficient. In practice the basis sets {χµ} often consist of a

finite number of atomic orbitals (AOs), i.e., one-electron functions centered on the

atoms that resemble the solutions of the Schrödinger equation for the hydrogen atom.

In a given basis set, the full configuration-interaction (FCI) wave-function provides a

solution to eq. (2.1),

|FCI〉 =
∑

I

CI |I〉 , (2.7)

where |I〉 is a Slater determinant or, in second-quantization, an occupation number

(ON) vector, which specifies whether zero, one, or two electrons are occupying a given

MO φp. The summation in eq. (2.7) runs over all ON vectors available within a given

basis set.

To arrive at the exact solution to the electronic Schrödinger equation, one must

consider a FCI expansion in a complete (i.e., infinite) basis set. This cannot be

achieved in practice and we usually introduce errors in both the one-electron space

(size of the basis set) and the N -electron space (number of electronic configurations

or ON vectors). In this thesis we will only discuss approximations in the N -electron
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Table 2.1: Index conventions used to denote orbitals. For molecular orbitals, the occupancy

is defined with respect to the optimized Hartree–Fock state.

p, q, r, s . . . Molecular orbitals of unspecified occupancy.

i, j, k, l . . . Occupied molecular orbitals.

a, b, c, d . . . Virtual or unoccupied molecular orbitals.

µ, ν, σ, ρ . . . Atomic orbitals, i.e., basis functions.

space, keeping in mind that for approaching the exact solution systematically, it is

important to improve the description in both spaces (see figure 2.1).

2.2 Hartree–Fock theory

The FCI solution to the Schrödinger equation is tractable only for systems containing a

small amount of electrons and using relatively small basis sets. For practical purposes

approximate N -electron models have to be designed. The Hartree–Fock (HF) model is

one of the cornerstones of electronic-structure theory and even though it is now rarely

used as a target model (because it is too inaccurate), it serves as a starting point to

some of the most successful approximations. HF is an independent-particle model,

i.e., it describes each electron as moving in the average electrostatic field generated by

the other electrons and the nuclei. Additionally, the HF wave-function is constructed

such that it satisfies Pauli’s exclusion principle. In this thesis, we consider only closed-

shell systems, i.e., molecules in which all MOs are either empty or occupied by two

electrons in a HF description. This definition leads, to the following parametrization

of the HF wave-function,

|HF〉 =

(∏

i

a†iαa
†
iβ

)
|vac〉 , (2.8)

where index i is used for denoting occupied MOs (see table 2.1 for index conventions),

while |vac〉 denotes the vacuum state in which all MOs are empty. The HF energy can

then be obtained as the expectation value of the Hamiltonian for a system described

by the (normalized) HF wave-function,

EHF = 〈HF|H |HF〉 . (2.9)

In electronic-structure theory, the variational principle states that finding the so-

lution to the time-independent Schrödinger equation is equivalent to finding the sta-

tionary points of the following energy functional,

E[Ψ̃] =
〈Ψ̃|H |Ψ̃〉
〈Ψ̃|Ψ̃〉

. (2.10)
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From eq. (2.8), we see that the HF wave-function is determined by the set of occupied

MOs, i.e., by the MO coefficients in eq. (2.6). Using the variational principle it is

thus apparent that the HF wave-function can be optimized by finding the set of MOs

that minimize the HF energy in eq. (2.9) and get as close as possible to the exact

energy with a single electronic configuration. In other words, the HF wave-function is

required to satisfy the following condition,

EHF(κ) = min
κ
〈H̃F| exp(κ)H exp(−κ) |H̃F〉 (2.11)

where |H̃F〉 is a guess for the HF wave-function and κ is a singlet anti-Hermitian

one-electron operator that performs unitary transformations among the MOs,

κ =
∑

ai

κai(Eai − Eia). (2.12)

The optimization condition in eq. (2.11) can be written as,

∂EHF(κ)

∂κai

∣∣∣∣
κ=0

= 2 〈HF| [Eai, H] |HF〉 = 0, (2.13)

where the optimized HF wave-function is given by |HF〉 = exp(−κHF) |H̃F〉 and the

parameters κHF
ai satisfy the optimization condition in eq. (2.13). Instead of expressing

the HF wave-function by performing a rotation of the original (guessed) MOs, the κ

operator can be used to transform directly the elementary operators,

a†pσ ≡ exp(−κ)a†pσ exp(κ). (2.14)

From now on we will assume that the MOs are expressed in the optimized HF basis

(unless specified otherwise).

One important result of HF theory is the Brillouin theorem, which can be derived

directly from eq. (2.13),

〈HF|HEai |HF〉 = 0. (2.15)

It implies that the HF state does not interact with singly-excited electronic config-

urations. As a consequence, one cannot improve on the HF ground state energy by

optimizing a linear combination of the HF states with all singly-excited states, as it is

done in the configuration-interaction singles (CIS) model (ECIS = EHF).

Canonical HF theory

As discussed at the beginning of this section, the HF approximation is an independent-

particle model. This suggests that the HF wave-function can be obtained by solving a

set of effective one-electron Schrödinger equations. Indeed, in canonical HF theory, the

optimized MOs are obtained as eigenvectors of an effective one-electron Hamiltonian



10 CHAPTER 2. ELECTRONIC-STRUCTURE THEORY

called the Fock operator,

F =
∑

pq

FpqEpq, (2.16)

Fpq = hpq +
∑

i

(2gpqii − gpiiq), (2.17)

= εpδpq, (2.18)

where the eigenvalues εp are called orbital energies and are obtained from,

Fa†pσ |vac〉 = εpa
†
pσ |vac〉 . (2.19)

A diagonalization of the Fock matrix is sufficient to satisfy the HF optimization con-

dition in eq. (2.13) but it is not necessary. Only a block-diagonal form of the Fock

matrix (Fai = Fia = 0) is required. This flexibility in the optimized HF orbitals (in-

variance with respect to rotations among orbitals of same occupancy) can be used to

impose specific properties on the optimized MOs. For example, it can be interesting

to generate localized MOs, as we will see in chapter 3.

Correlation energy

In HF theory, only electrons of parallel spin are correlated through Pauli’s exclusion

principle, which means that most of the electronic correlation effects are neglected.

For a given basis set, the concept of correlation energy is thus defined as the difference

between the “exact” (FCI) energy and the HF energy,

Ecorr
FCI = EFCI − EHF. (2.20)

The electronic correlation effects can be divided into two categories, (i) the static

correlation effects, which arise when the HF state does not provide a qualitatively

good approximation to the FCI solution due to the fact that more than one electronic

configuration is required to qualitatively describe the system and (ii) the dynamic cor-

relation effects which originate from the instantaneous repulsion of electrons through

the Coulomb potential. In wave-function based methods, the treatment of static cor-

relation requires the use of multi-configurational methods and will not be covered in

this thesis.

2.3 Coupled cluster theory

In order to improve on the HF approximation and recover some of the correlation

energy, one has to consider additional electronic configurations (i.e., ON vectors) by

performing excitations from the HF reference wave-function. If one targets the FCI

energy, the linear parametrization of eq. (2.7) is appropriate. However, due to the
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extreme computational scaling of the FCI method with the system size, intermediate

descriptions are usually more appealing. In the truncated configuration-interaction

(CI) method, one only considers a subset of excited configurations, e.g., all singly and

doubly excited configurations (CISD),

|CISD〉 = |HF〉+
∑

µ1

Cµ1 |µ1〉+
∑

µ2

Cµ2 |µ2〉 , (2.21)

where the indices µi denote electronic configurations in which i electrons have been

“excited” from occupied to virtual HF orbitals. However, a linear parametrization

of the wave-function comes with undesirable features. For example, the correlation

energy converges slowly to the FCI limit when the level of truncation is increased and

it lacks size-extensivity, i.e., at a given level of truncation, the recovery of the FCI

correlation energy decreases with the number of electrons when it should be constant.

To avoid those issues, the coupled cluster (CC) wave-function is written in a prod-

uct form, usually via an exponential parametrization,14

|CC〉 = exp(T ) |HF〉 , (2.22)

where T is the so-called cluster operator which performs all possible excitations from

the HF reference configuration,

T =

N∑

i

Ti. (2.23)

N denotes the number of electrons in the system, while i corresponds to the excitation

level, such that,

T1 =
∑

ai

taiEai, (2.24a)

T2 =
1

2!

∑

aibj

tabij EaiEbj , (2.24b)

Ti =
1

i!

∑

µi

tµi
τµi
, (2.24c)

Splitting the cluster operator into the different levels of excitation allows one to define

a hierarchy of CC models. Including only the T1 operator corresponds to the CCS

model, T1 and T2 to the CCSD model, T1, T2, and T3 to the CCSDT model, etc.

Such a hierarchy of CC models provides a fast and systematic way to converge to

the FCI limit, while ensuring size-extensivity of the correlation energy at each level

of truncation. Those attractive features are due to the definition of the exponential

function used to parametrize the CC wave-function,

exp(T ) = 1 + T +
1

2!
T 2 +

1

3!
T 3 + · · · (2.25)
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Indeed, if only single and double excitations are included in the cluster operator (i.e.,

for the CCSD model), all higher excitations will still be included in the CC wave-

function through disconnected terms like 1
2T1T2 or 1

2T2T2.15 Those disconnected terms

are the key to achieve size-extensivity as well as fast convergence to the FCI limit.

If the cluster operator is not truncated, the CC and FCI wave-functions are equiv-

alent and the following CC Schrödinger equations are satisfied,

H |CC〉 = ECC |CC〉 , (2.26)

exp(−T )H exp(T ) |HF〉 = ECC |HF〉 . (2.27)

In contrast to HF theory, the variational method cannot be used to optimize the

CC wave-function efficiently. Instead, the CC amplitudes are obtained by projecting

the CC Schrödinger equation in eq. (2.27) against the set of excited configurations

|µi〉 = τµi |HF〉,
〈µi| exp(−T )H exp(T ) |HF〉 = 0, (2.28)

where the projection manifolds |µi〉 correspond to all configuration accessible by ap-

plying the truncated cluster operator T linearly to the HF state. Eq. (2.28) constitutes

a set of non-linear equations which couple the amplitudes.

Once the CC amplitudes have been optimized from eq. (2.28), the CC energy can

be obtained by projecting eq. (2.27) against the HF state,

ECC = 〈HF| exp(−T )H exp(T ) |HF〉 , (2.29a)

= EHF + Ecorr
CC , (2.29b)

= EHF +
∑

aibj

(tai t
b
j + tabij )Liajb, (2.29c)

where Liajb = 2giajb−gibja. The expression for the CC correlation energy in eq. (2.29c)

is the same for all standard CC models, which means that triple amplitudes tabcijk and

amplitudes of higher excitation level affect the CC energy only by coupling with the

singles and doubles amplitudes through eq. (2.28).

2.3.1 The coupled cluster singles and doubles model: CCSD

The CCSD approximation is the first model of the standard CC hierarchy to introduce

correlation effects. As such, it is a widely used approximation and we now introduce

the working equations for the optimization of the CCSD amplitudes.

As mentioned previously, in the CCSD model, the cluster operator includes only

single T1 and double T2 excitations. Eq. (2.28) can thus be divided into a singles

amplitude equation,

ΩCCSD
µ1

= 〈µ1| exp(−T2)H̃ exp(T2) |HF〉 = 0, (2.30)
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and a doubles amplitude equation,

ΩCCSD
µ2

= 〈µ2| exp(−T2)H̃ exp(T2) |HF〉 = 0, (2.31)

where we have introduced the CCSD vector functions ΩCCSD
µ1

and ΩCCSD
µ2

as well as

the similarity-transformed Hamiltonian,16

H̃ = exp(−T1)H exp(T1), (2.32)

where the similarity transformation can be applied directly to the elementary operators

a†pσ and apσ in the same way as in HF theory [see eq. (2.14)] such that the integrals in

the T1-transformed Hamiltonian are now expressed in terms of T1-transformed MOs,

H̃ =
∑

pq

h̃pqEpq +
1

2

∑

pqrs

g̃pqrsepqrs + hnuc, (2.33)

where the MO integrals can be directly generated from their counter-part in the AO

basis {χµ}, as,

h̃pq =
∑

µν

XµpYνqhµν (2.34a)

g̃pqrs =
∑

µνσρ

XµpYνqXσrYρsgµνσρ, (2.34b)

and the transformation matrices X and Y are given by,

Xµi = Cµi

Yµi = Cµi +
∑
a Cµat

a
i

Xµa = Cµa −
∑
i Cµit

a
i

Yµa = Cµa
(2.35)

where the C matrix is directly obtained from the solution of the HF problem and

performs transformations from AOs to HF MOs.

Using the Baker–Campbell–Hausdorff (BCH) expansion of the similarity-transformed

Hamiltonian, eqs. (2.30) and (2.31) may be rewritten as,

ΩCCSD
µ1

= 〈µ1| H̃ + [H̃, T2] |HF〉 = 0, (2.36a)

ΩCCSD
µ2

= 〈µ2| H̃ + [H̃, T2] +
1

2
[[H̃, T2], T2] |HF〉 = 0, (2.36b)

where the BCH expansion naturally stops after a few terms due to rank-reduction

and the fact that the Hamiltonian is a two-electron operator [see Ref. 13 for more

details]. From eqs. (2.36a) and (2.36b) it is now possible to derive the CCSD working

equations. The singles vector function can be written as,

ΩCCSD
ai = ΩA1

ai + ΩB1
ai + ΩC1

ai + ΩD1
ai (2.37)
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where,

ΩA1
ai =

∑

cdk

ucdki g̃adkc (2.38a)

ΩB1
ai = −

∑

ckl

uackl g̃kilc (2.38b)

ΩC1
ai =

∑

ck

uacik F̃kc (2.38c)

ΩD1
ai = F̃ai, (2.38d)

while the doubles vector function is given by,

ΩCCSD
aibj = ΩA2

aibj + ΩB2
aibj + P abij

(
ΩC2
aibj + ΩD2

aibj + ΩE2
aibj

)
(2.39)

where,

ΩA2
aibj = g̃aibj +

∑

cd

tcdij g̃acbd (2.40a)

ΩB2
aibj =

∑

kl

tabkl

(
g̃kilj +

∑

cd

tcdij g̃kcld

)
(2.40b)

ΩC2
aibj = −1

2

∑

ck

tbckj

(
g̃kiac − 1

2

∑

dl

tadli g̃kdlc

)
−
∑

ck

tbcki

(
g̃kjac − 1

2

∑

dl

tadlj g̃kdlc

)
(2.40c)

ΩD2
aibj =

1

2

∑

ck

ubcjk

(
L̃aikc +

1

2

∑

dl

uadil L̃ldkc

)
(2.40d)

ΩE2
aibj =

∑

c

tacij

(
F̃bc −

∑

dkl

ubdkl g̃ldkc

)
−
∑

k

tabik

(
F̃kj +

∑

cdl

ucdlj g̃kdlc

)
, (2.40e)

and where we have introduced the following intermediates,

uabij = 2tabij − tbaij , (2.41a)

L̃pqrs = 2g̃pqrs − g̃psrq, (2.41b)

F̃pq = h̃pq +
∑

i

(2g̃pqii − g̃piiq), (2.41c)

P abij X
ab
ij = Xab

ij +Xba
ji . (2.41d)

An analysis of the explicit expressions of the CCSD vector functions shows that

the term with the highest computational scaling is the second term in eq. (2.40a), i.e.,

ΩA2.2
aibj =

∑

cd

tcdij g̃acbd, (2.42)

which scales as O(O2V 4) ∼ O(N6) where O and V denote the number of occupied

and virtual orbitals, respectively, while N is used as a generic measure of the size of

the system. Performing a similar analysis on the next approximation in the CC hier-

archy would reveal that the CCSDT model scales as O(N8). The lack of intermediates
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between the CCSD and CCSDT models is problematic as it puts severe limits on the

problems that can be treated, both in terms of size of the molecules and in terms of

accuracy of the results. As we will show in the next section, a combination of CC the-

ory with Møller–Plesset perturbation theory can be used to design such intermediate

models and extend the applicability of the CC hierarchy.

2.4 Coupled cluster perturbation theory

In Møller–Plesset perturbation theory, the electronic molecular Hamiltonian in eq. (2.2)

is partitioned into a zero-order Hamiltonian chosen to be the Fock operator and a per-

turbation,

H = F + Φ + hnuc, (2.43)

where the perturbation Φ is often referred to as the fluctuation potential and corre-

sponds to the difference between the true Coulomb potential,

g =
1

2

∑

pqrs

gpqrsepqrs (2.44)

and the effective one-electron Fock potential,

V =
∑

pq

∑

i

(2gpqii − gpiiq)Epq, (2.45)

Φ = H − F − hnuc (2.46a)

= g − V. (2.46b)

As in CC theory, we assume the solution to the zero-order Schrödinger equation to be

available, i.e., the HF wave-function and the orbital energies are known,

H(0) |Ψ(0)〉 = E(0) |Ψ(0)〉 , (2.47)

F |HF〉 = 2
∑

i

εi |HF〉 . (2.48)

where we have assumed a canonical representation of the Fock operator (see sec-

tion 2.2).

To arrive at the CC perturbation theory (CCPT) main equations, the exact wave-

function is parametrized with the CC ansatz in eq. (2.22), and the Møller–Plesset

partitioning of the Hamiltonian is introduced in the projected CC equations [eqs. (2.28)

and (2.29a)],

E = E(0) + 〈HF| exp(−T )Φ exp(T ) |HF〉+ hnuc, (2.49a)

εµi
tµi

= −〈µi| exp(−T )Φ exp(T ) |HF〉 , (2.49b)
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where, εµi
denotes a combination of orbital energies (e.g., εaibj = εa − εi + εb − εj).

One can then consider a Lagrangian, in which the energy in eq. (2.49a) is calculated

subject to the constraints in eq. (2.49b),

L(t, t̄) =E(0) + 〈HF| exp(−T )Φ exp(T ) |HF〉+ hnuc

+
∑

i

∑

µi

t̄µi
εµi
tµi

+
∑

i

∑

µi

t̄µi
〈µi| exp(−T )Φ exp(T ) |HF〉 , (2.50)

where the Lagrangian multipliers are denoted t̄µi . We note that ensuring the following

variational condition,

Lµi =
∂L
∂t̄µi

= 0, (2.51)

is equivalent to solving eq. (2.49b) and thus determines the CCPT amplitudes. An

additional condition is then required to determine the Lagrangian multipliers, and we

ensure that the Lagrangian is also variational with respect to the amplitudes,

L̄µi
=

∂L
∂tµi

= 0. (2.52)

In order to obtain expressions for CCPT energies and wave-function parameters,

the Lagrangian is expanded in orders of the fluctuation potential, and the variational

conditions in eqs. (2.51) and (2.52) are solved to each order separately,

L(0)
µi

= L(1)
µi

= L(2)
µi

= · · · = 0 (2.53a)

L̄(0)
µi

= L̄(1)
µi

= L̄(2)
µi

= · · · = 0 (2.53b)

which yields the perturbed amplitudes and multipliers,

tµi
= t(0)

µi
+ t(1)

µi
+ t(2)

µi
· · · (2.54a)

t̄µi
= t̄(0)

µi
+ t̄(1)

µi
+ t̄(2)

µi
· · · (2.54b)

This specific formulation of CCPT leads to expressions that satisfy Wigner’s 2n + 1

rule, which states that the energy to order 2n+1 may be calculated from the amplitudes

to order n and lower. In addition, a similar rule can be derived for the multipliers of

order n and lower, which then determine the energy to order 2n+ 2.

2.4.1 The second-order Møller–Plesset model: MP2

Considering the zero- and first-order energies in the Møller–Plesset series, leads to the

HF energy, E(0) + E(1) = EHF. Therefore, to start recovering some of the correlation

energy, one has to consider the energy at least up to second-order in the fluctuation

potential. This is done in the second-order Møller–Plesset (MP2) model,17

EMP2 = E(0) + E(1) + E(2) (2.55a)

= EHF + E(2). (2.55b)
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The 2n + 1 and 2n + 2 rules imply that to obtain the second-order contributions to

the energy one has to determine the zero-order amplitudes and multipliers as well as

the first-order amplitudes. From the variational conditions in eq. (2.53), it can be

shown that the zero-order amplitudes and multipliers vanish and only the first-order

amplitudes are then needed to determine the MP2 energy,

t(1)
µi

= −〈µi|Φ |HF〉
εµi

. (2.56)

Because of the Brillouin theorem in eq. (2.15) and since the fluctuation potential is

a two-electron operator, only doubles amplitudes enter in first-order, and eq. (2.56)

becomes,

t
ab(1)
ij =

gaibj
εi − εa + εj − εb

. (2.57)

From the second-order terms in the CCPT Lagrangian in eq. (2.50) we then obtain an

expression for the MP2 correlation energy,

Ecorr
MP2 = 〈HF| [Φ, T (1)

2 ] |HF〉 (2.58a)

=
∑

aibj

t
ab(1)
ij Liajb, (2.58b)

which is equivalent to the CC expression of the correlation energy in eq. (2.29c) where

the singles amplitudes are zero.

The MP2 model is one of the simplest models to include electronic correlation ef-

fects and it is extensively used since it recovers most of the CCSD correlation energy

at a lower computational cost [MP2 scales as O(N5) while CCSD scales as O(N6)]. It

is also a non-iterative model, i.e., the MP2 amplitudes in eq. (2.57) can be obtained

directly from integrals and orbital energies, while the optimization of the CCSD am-

plitudes relies on iterative procedures. However, the accuracy of the MP2 results is

limited and in order to reach higher accuracy it is important to include effects from

connected single as well as triple excitations. Calculating the third or fourth order

corrections to the energy in the Møller–Plesset series through the MP3 or MP4 models

is not as effective as in the MP2 case and can lead to convergence problems.13,18,19

In the CCSD model presented in section 2.3.1, the effects of single excitations usually

improves on the MP2 description but still lacks the relaxation effects of connected

triple excitations which are important to achieve high accuracy.

In section 2.4.3 we introduce the so-called CCSD(T) model, which constitutes an

intermediate between the CCSD and CCSDT models based on perturbation theory

while in the next section we briefly present an alternative second-order model designed

for the calculation of frequency-dependent molecular properties.



18 CHAPTER 2. ELECTRONIC-STRUCTURE THEORY

2.4.2 The second-order approximate coupled cluster singles

and doubles model: CC2

Due to Brillouin’s theorem, the MP2 model does not include effects from single excita-

tions. This becomes problematic in the derivation of frequency-dependent molecular

properties in the framework of response theory (see section 2.5). To circumvent this

issue, the CC2 model was introduced as a second-order approximation to the CCSD

energy in which the singles are treated as zero-order parameters (instead of second-

order).20 The CC2 singles equations are therefore equivalent to the ones in the CCSD

model [see eq. (2.36a)],

ΩCC2
µ1

= 〈µ1| H̃ + [H̃, T2] |HF〉 = 0, (2.59)

while the CC2 doubles amplitude equations are approximated to be correct to first-

order in the fluctuation potential and eq. (2.36b) therefore becomes,

ΩCC2
µ2

= 〈µ2| H̃ + [F, T2] |HF〉 = 0. (2.60)

This approximated form of the doubles equations leads to a closed-form of the doubles

amplitudes similar to MP2 but where the two-electron integrals are now expressed in

the T1-transformed basis,

tabij =
g̃aibj

εi − εa + εj − εb
. (2.61)

While the MP2 model is non-iterative, the CC2 equations have to be solved iteratively

since the singles and doubles amplitudes couple through eqs. (2.59) and (2.60). How-

ever, the CC2 model, like MP2, scales as O(N5) with the system size and its energy

is correct to second-order in the fluctuation potential.

In order to complete the hierarchy of CCPT models for the calculation of frequency-

dependent molecular properties, the CC3 model has also been introduced as an in-

termediate between the CCSD and CCSDT models.21 We therefore end-up with the

following set of iterative models, ordered according to increasing accuracy and com-

putational scaling,

CCS < CC2 < CCSD < CC3 < CCSDT . . .

O(N4) O(N5) O(N6) O(N7) O(N8)

We note that other CC models have been designed for the calculation of excitation

energies. For second-order models we can mention the equation-of-motion second-

order many-body perturbation theory EOM-MBPT(2),22,23 the algebraic diagram-

matic construction ADC(2),24 and the second-order polarization propagator approxi-

mation (SOPPA)25,26 models. A series of triples corrected models, such as CCSDR(3),27

have also been designed for the calculation of excitation energies.28–30
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2.4.3 The coupled cluster singles and doubles with perturba-

tive triples model: CCSD(T)

The hierarchy of CCPT models presented in the previous section is well adapted

to calculate frequency-dependent properties. However, for ground-state energies or

static molecular properties, the CC2 and CC3 models can be replaced by the MP2

and CCSD(T) models, respectively, which are more attractive since they rely on non-

iterative procedures.

In the CCSD(T) model, a standard CCSD calculation is performed, as described

in section 2.3.1, providing the CCSD singles and doubles amplitudes as well as the

CCSD correlation energy. A triples correction to the CCSD energy, Ecorr
(T) , can then

be calculated based on perturbation theory,

Ecorr
CCSD(T) = Ecorr

CCSD + Ecorr
(T) . (2.62)

In contrast with the CC3 or CCSDT models, in the (T) correction, the triples do not

couple back to relax the CCSD amplitudes. This lack of coupling is important to

ensure that the (T) correction can be calculated using a non-iterative procedure.

From the CCPT Lagrangian formalism summarized at the beginning of this section,

it can be shown that the CCSD energy is correct to third-order in the fluctuation

potential. The CCSD energy can thus be corrected by calculating higher order terms

from the CCPT expansion. In the CCSD(T) model, this is done by considering the

fourth- and fifth-order contributions to the CCPT Lagrangian in eq. (2.50) and keeping

only those terms that include connected triples and that are projected against the

singly and doubly excited manifolds, i.e.,

E
(4)
T =

∑

µ2

t̄(1)
µ2
〈µ2| [Φ, T (2)

3 ] |HF〉 (2.63a)

E
(5)
T =

∑

i=1,2

∑

µi

t̄(2)
µi
〈µi| [Φ, T (2)

3 ] |HF〉 , (2.63b)

where the connected triples contained in the cluster operator T
(2)
3 are given by,

t
abc(2)
ijk = P abcijk

∑
d t
ad(1)
ij gckbd −

∑
l t
ab(1)
il gcklj

εi − εa + εj − εb + εk − εc
(2.64)

P abcijk X
abc
ijk = Xabc

ijk +Xacb
ikj +Xbac

jik +Xbca
jki +Xcab

kij +Xcba
kji . (2.65)

Finally, both the first- and second-order Lagrangian multipliers as well as the first-

order amplitudes are replaced by the CCSD singles and doubles amplitudes,

Ecorr
(T) =

∑

i=1,2

∑

µi

tµi
〈µi| [Φ, ∗T (2)

3 ] |HF〉 , (2.66)
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where we have inserted an asterisk to underline that the first-order doubles ampli-

tudes in eq. (2.64) are also replaced by the CCSD amplitudes. After some algebraic

manipulations, we arrive at the final (T) working equations,

Ecorr
(T) = E[4] + E[5] (2.67)

E[4] = 2
∑

aibj

(2tabij − tabji ) ∗T abij (2.68)

E[5] = 2
∑

ai

tai
∗T ai (2.69)

where we have used square brackets to underline that those contributions are not

strictly equivalent to eq. (2.63). We have also introduced the following intermediates,

∗T ai =
∑

cdkl

(∗tacd(2)
ikl − ∗tacd(2)

lki )Lkcld (2.70)

∗T abij =
∑

cdk

(∗tacd(2)
ijk Lbckd − ∗tacd(2)

kji gkdbc)

−
∑

ckl

(∗tabc(2)
ikl Lkjlc − ∗tabc(2)

lki gkjlc). (2.71)

The (T) correction to the CCSD energy has shown to be very efficient at recovering

the effects of connected triples and the CCSD(T) model is often described as the gold

standard of quantum chemistry. Finally, we note that the equations presented in this

section differ from the original ones.31 They are however equivalent and will become

convenient in our description of local CC methods in chapter 3.

We have now introduced several models of electronic-structure theory that allows

to solve the Schrödinger equation with different levels of approximations and different

computational costs. In the following and last section of this chapter, we consider how

molecular properties can be extracted from solutions of the Schrödinger equation and

in particular, how electronic transitions can be described by those solutions.

2.5 Electronic transitions

The exact solutions to the time-independent electronic Schrödinger equation for molecules

in their equilibrium geometry lead to a spectrum of energies and states,

H |Ψm〉 = Em |Ψm〉 . (2.72)

So far we have been discussing the solution corresponding to the lowest possible energy

of a system, i.e., the ground state energy E0. An isolated system in its ground state

will stay indefinitely in that state. However, a transition from the ground state to a

state of higher energy, i.e., an excited state can occur if the right amount of energy is

transferred to the system. This excitation energy is usually transferred by light in the
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(a) Electronic energy levels and transitions. (b) Typical UV-visible absorption spectrum.

Figure 2.2: (a): Cartoon representation of an electronic excitation from the ground state to

the first excited state of a diatomic molecule by absorption of a single photon. Req refers

to the equilibrium inter-atomic distance for the molecule in its electronic ground state (the

energy levels associated with other degrees of freedom such as vibrations, rotations, etc. are

neglected). (b): Cartoon representation of the corresponding absorption spectrum.

ultra-violet (UV) and visible regions of the electromagnetic spectrum. All electronic

transitions are not equally likely to happen and knowing the excitation energy as well

as the probability associated with a given transition (the transition strength) leads

to absorption spectra that can be compared with experiments and give information

about, e.g., the color of a given compound. The processes involved in such light-matter

interactions are illustrated in figure 2.2.

The concept of oscillator strength is often used to evaluate the electronic transition

probability. It can be derived from time-dependent perturbation theory under the

electric dipole approximation (in the length gauge),32

f0m =
2

3
ωm

∑

i=x,y,z

〈Ψm| θi |Ψ0〉 〈Ψ0| θi |Ψm〉 , (2.73)

where we have introduced the excitation energy from the ground state to the m-th

excited state, ωm = Em − E0, as well as the electric dipole operator,

θi =
∑

pq

θipqEpq, (2.74)

θipq = −
∫
φp(r)riφq(r)dr, (2.75)
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where ri denotes one of the Cartesian components of the position operator.

The calculation of excitation energies is a difficult task which can in general not

be achieved using the machinery developed in the previous sections. One important

complication is that many excited states have multi-configurational character, i.e.,

a single HF configuration does not provide a qualitative description of the states in

question.33,34 This issue has been bypassed in the context of response theory where

excitation energies as well as molecular properties can be computed without explicitly

calculating the excited state wave-functions. Instead, the isolated system is considered

in its ground state and is perturbed (in the sense of perturbation theory) by an external

field. Molecular properties are then obtained as response functions, i.e., the response

of the system to the perturbation. Excitation energies and oscillator strengths then

arise as side-products of the response functions.

In the next sections we summarize how excitation energies and oscillator strengths

are calculated in response theory, first for exact states and then for CC models. Most

of the following content is based on Refs. 35 and 36.

2.5.1 Response theory for exact states

The goal of response theory is to calculate molecular properties that can be compared

with experiments. In quantum mechanics, physical properties or observables are as-

sociated with Hermitian operators and in general, only the average value of a series of

measurements is predictable. A Hermitian time-independent operator VA is therefore

associated with a given property and the average value of interest is given by the

expectation value of VA,

〈VA〉 (t) = 〈Φ(t)|VA |Φ(t)〉 , (2.76)

where |Φ(t)〉 is a solution to the time-dependent Schrödinger equation,

H(t) |Φ(t)〉 = i∂t |Φ(t)〉 . (2.77)

Response theory therefore aims at calculating the expectation values of Hermitian

operators. The Hamiltonian in eq. (2.77) can often be decomposed into a time-

independent part H, taken to be the electronic molecular Hamiltonian in eq. (2.2)

and a time-dependent perturbation V (t),

H(t) = H + V (t). (2.78)

In the development of response theory for exact state, it is assumed that the solutions

to the time-independent problem in eq. (2.72) are known. In addition, the perturbation

is required to be periodic in time with period T and frequency ω = 2π/T . The

perturbation describes the interaction of the molecule with, e.g., an electromagnetic
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radiation, and it can be written as a Fourier expansion,

V (t) =
∑

A

εAVA exp(−iωAt), (2.79)

where εA is the perturbation strength associated with the time-independent Hermitian

operator VA. The frequency of the perturbation ωA, should not be confused with the

excitation energy ωm.

The quasi-energy

Without loss of generality, the time-dependent wave-function |Φ(t)〉 can be expressed

as a product of a phase-factor e−iF(t) and a regular time-periodic wave-function

|ΦR(t)〉,

|Φ(t)〉 =e−iF(t) |ΦR(t)〉 . (2.80)

The real phase F(t) can be separated into a time-periodic part FT (t) and a part linear

in time Qt,

F(t) = FT (t) +Qt, (2.81)

|Φ(t)〉 =e−iFT (t)e−iQt |ΦR(t)〉 . (2.82)

Inserting the expression for |Φ(t)〉 in eq. (2.77) leads to the following eigenvalue prob-

lem, satisfied at each time t,

(
H(t)− ḞT (t)− i∂t

)
|ΦR(t)〉 = Q |ΦR(t)〉 , (2.83)

where the dot in ḞT (t) denotes differentiation with respect to time. The time-periodic

phase FT (t) is not uniquely defined and depends on the parametrization of |Φ(t)〉.
However, we can get rid of this term by considering eq. (2.83) in a composite Hilbert

space37 where the standard (spatial) inner-product 〈f(t)|g(t)〉 is augmented with time-

averaging,

{
〈f(t)|g(t)〉

}
T

=
1

T

∫ T

0

〈f(t)|g(t)〉dt. (2.84)

We also recall that for a time-periodic function f(t) of period T ,

{
ḟ(t)

}
T

= 0. (2.85)

The operator H(t)− i∂t can be shown to be Hermitian in the composite Hilbert space

and eq. (2.83) thus corresponds to a Hermitian eigenvalue problem in that space (ḞT (t)
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is real). By projecting eq. (2.83) against 〈ΦR(t)| in the composite Hilbert space we

arrive at,

Q =
{
〈ΦR(t)|H(t)− i∂t |ΦR(t)〉

}
T

(2.86)

where we have used that the regular wave-function is time-periodic and normalized,

〈ΦR(t)|ΦR(t)〉 = 1 and that FT (t) is also time-periodic. As we will see below, in

absence of perturbation, the quantity Q reduces to the energy of the system and it is

therefore called the quasi-energy. As for the energy in the time-independent case (see

section 2.2), the following time-dependent variational principle can be formulated for

the quasi-energy,

δQ =
{
〈δΦR(t)|H(t)− i∂t |ΦR(t)〉

}
T

+
{
〈ΦR(t)|H(t)− i∂t |δΦR(t)〉

}
T

= 0, (2.87)

which can be derived from eq. (2.83) by considering a time-periodic perturbation

δΦR(t), for which 〈ΦR(t) + δΦR(t)|ΦR(t) + δΦR(t)〉 = 1. The quasi-energy is thus sta-

ble with respect to first-order variations of the regular wave-function. Since eq. (2.83)

corresponds to a Hermitian eigenvalue problem in the composite Hilbert space, finding

the wave-functions |ΦR(t)〉 that satisfy δQ = 0 is therefore equivalent to finding the

eigenvalues and eigenvectors of eq. (2.83).13

It is now interesting to consider eq. (2.86) in the absence of perturbations, H ≡ H.

The time-dependent wave-function can then be parametrized as,

|Φ(t)〉 =e−iφe−iEmt |Ψm〉 , (2.88)

where Em and |Ψm〉 are the eigenvalues and eigenvectors solutions to the time-independent

Schrödinger equation and φ is an undetermined time-independent phase. By turn-

ing off the perturbation in the Hamiltonian we have therefore induced the following

changes in the wave-function,

|ΦR(t)〉 → |Ψm〉 (2.89)

FT (t)→ φ (2.90)

Q → Em (2.91)

which is also consistent with a substitution in eq. (2.86),

Q =
{
〈Ψm|H |Ψm〉

}
T

= 〈Ψm|H |Ψm〉 = Em. (2.92)

In other words, the quasi-energy indeed reduces to the energy of the system in absence

of perturbation, hence the name.

As stated previously, physical properties are related to expectation values of Her-

mitian operators, it is thus important for the following to see how the quasi-energy can
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be related to such quantities. Let us then consider the derivative of the quasi-energy

with respect to a given perturbation strength,

dQ
dεA

=
{
〈ΦR(t)| ∂H(t)

∂εA
|ΦR(t)〉

}
T

+ δQ (2.93)

=
{
〈ΦR(t)|VA |ΦR(t)〉 exp(−iωAt)

}
T
, (2.94)

where we have used the variational principle for the quasi-energy with the variation,

|δΦR(t)〉 =

∣∣∣∣
∂ΦR(t)

∂εA

〉
. (2.95)

This relation between the expectation value of a Hermitian operator VA and the deriva-

tive of the quasi-energy is important to understand how molecular properties arise from

response theory.

Response functions

In the case of a time-independent perturbation,

V =
∑

A

VAεA, (2.96)

the quasi-energy in eq. (2.86) becomes the energy of the perturbed system E0(ε).

Where the perturbation could be a distortion of the molecular structure or an electro-

static field. The perturbed energy can then be expanded in orders of the perturbation

strengths,

E0(ε) = E0 +
∑

A

E
(A)
0 εA +

1

2

∑

A,B

E
(A,B)
0 εAεB +O(ε3), (2.97)

where,

E
(A)
0 =

dE0(ε)

dεA

∣∣∣∣
ε=0

(2.98)

describes the first-order response of the system to the external perturbation and,

E
(A,B)
0 =

d2E0(ε)

dεAdεB

∣∣∣∣
ε=0

(2.99)

is the second-order response to the perturbation etc. Depending on the perturbation,

the response functions (E
(A)
0 , E

(A,B)
0 . . . ) can then be attributed to different static

(time-independent) molecular properties.38,39

In analogy to the time-independent case, the quasi-energy can also be expanded in

orders of the perturbation strengths,

Q(ε) = E0 +
∑

A

Q(A)εA +
1

2

∑

A,B

Q(A,B)εAεB +O(ε3). (2.100)
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Introducing the established notation in the field, we have that the first-order molecular

properties,

Q(A) =
dQ(ε)

dεA

∣∣∣∣
ε=0

= 〈VA〉0 = 〈Ψ0|VA |Ψ0〉 (2.101)

are frequency-independent and correspond to the ground state expectation value of

the perturbation. The second-order properties,

Q(A,B) =
d2Q(ε)

dεA∂εB

∣∣∣∣
ε=0

= 〈〈VA;VB〉〉ωB
(2.102)

correspond to the linear response functions and in the well-known sum-over-states

representation we have,

〈〈VA;VB〉〉ωB
= P (A,B)

∑

m 6=0

〈Ψ0|VA |Ψm〉 〈Ψm|VB |Ψ0〉
ωB − ωm

, (2.103)

with the frequency condition, ωA + ωB = 0, and where we have introduced the per-

mutation operator,

P (A,B)f(A,B) = f(A,B) + f(B,A). (2.104)

Higher order response functions can also be derived, but only the linear response

function is of interest in this thesis.

Excitation energies and oscillator strengths

It is easy to see in eq. (2.103) that excitation energies can be identified from the poles

of the linear response function, i.e., whenever ωB = ωm. Additionally, if the Hermitian

operators VA and VB are chosen to be the components of the electric dipole operator,

the linear response function then corresponds to frequency-dependent polarizabilities,

and its residues give transition strengths,

lim
ω→ωm

(ω − ωm) 〈〈θi, θj〉〉ω = 〈Ψ0| θi |Ψm〉 〈Ψm| θj |Ψ0〉 = Sθi,θj0m . (2.105)

Which can be directly related to the oscillator strength in eq. (2.73),

f0m =
2

3
ωm

∑

i=x,y,z

Sθi,θi0m . (2.106)

We have now shown how excitation energies and oscillator strengths can be ob-

tained from response theory as side products (poles and residues) of the linear response

function. In the next section we summarize how the response formalism can be applied

to CC theory for the calculation of excitation energies and oscillator strengths.
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2.5.2 Excitation energies and oscillator strengths for CC mod-

els

In the previous section we have not assumed any specific parametrization of the regular

time-periodic wave-function |ΦR(t)〉. The only requirement was that the optimized

wave-function satisfies the variational principle for the quasi-energy in eq. (2.87).

In order to apply the response formalism to CC theory, it is important that when

the perturbation is turned off, the quasi-energy and the regular wave-function both

reduce to the unperturbed CC ground state energy and wave-function as given in

section 2.3, respectively.

Let us then write the CC time-dependent wave-function as,

|CC(t)〉 = e−iFT (t)e−iQt |CCR(t)〉 (2.107)

= N(t)e−iFT (t)e−iQteT (t) |HF〉 . (2.108)

The cluster operator T (t) is now time-dependent in the CC amplitudes tµ(t) and N(t)

is a time-periodic normalization factor due to the fact that the CC wave-functions is

not unit-normalized but intermediate normalized,

〈HF|CCI(t)〉 = 1, (2.109)

|CCI(t)〉 = eT (t) |HF〉 . (2.110)

The equivalent form of the projected CC equations in eqs. (2.28) and (2.29a) in the

time-dependent regime and in the composite Hilbert space are then given by,

QCC =
{
〈HF| e−T (t) (H(t)− i∂t) eT (t) |HF〉

}
T
, (2.111)

{
〈µ| e−T (t) (H(t)− i∂t) eT (t) |HF〉

}
T

= 0. (2.112)

Note that due to time-periodicity and time-averaging both the phase and the nor-

malization factors are eliminated from eqs. (2.111) and (2.112). However, as in the

time-independent case (see section 2.3), the time-dependent CC wave-function does

not satisfy a variational principle for the CC quasi-energy in eq. (2.111), i.e., δQCC

is in general different from zero. The strategy developed in section 2.5.1 for varia-

tional models can thus not be directly applied to the CC quasi-energy. However, this

difficulty can be bypassed by considering a CC quasi-energy Lagrangian,

LCC =
{
〈HF| e−T (t) (H(t)− i∂t) eT (t) |HF〉

}
T

+
∑

µ

{
t̄µ(t) 〈µ| e−T (t) (H(t)− i∂t) eT (t) |HF〉

}
T
. (2.113)

By construction, the CC quasi-energy Lagrangian is variational with respect to the

Lagrange multipliers t̄µ(t), and we require that it is also stationary with respect to
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Table 2.2: Expressions for intermediate tensors used in CC response theory. The zero-

order parameters T and tµ correspond to the ground state and are determined as detailed

in section 2.3, while t̄µ denotes the ground state Lagrangian multipliers determined from

eq. (2.125).40

ηµ =
∂Q(0)

CC

∂tµ
=
∂ECC

∂tµ
= 〈HF| [H, τµ] |CC〉

ηAµ =
∂2L(2)

CC

∂tAµ ∂εA
= 〈Λ| [VA, τµ] |CC〉

ξAµ =
∂2L(2)

CC

∂t̄Aµ ∂εA
= 〈µ| exp(−T )VA |CC〉

Fµν =
∂2L(2)

CC

∂tAµ ∂t
B
ν

= 〈Λ| [[H, τµ]τν ] |CC〉

Jµν =
∂2L(2)

CC

∂t̄Aµ ∂t
B
ν

= 〈µ| exp(−T )[H, τν ] |CC〉

〈Λ| = 〈HF|+∑ν t̄ν 〈ν| exp(−T )

|CC〉 = exp(T ) |HF〉

the CC amplitudes,

∂LCC

∂t̄µ(t)
=0, (2.114)

∂LCC

∂tµ(t)
=0. (2.115)

For optimized parameters, the Lagrangian in eq. (2.113) is equivalent to the quasi-

energy and it can therefore be used to determine response functions in the same way

as for variational models.

The CC linear response function is then given by,

〈〈VA;VB〉〉ωB
= L(A,B)

CC =
d2LCC(ε)

dεAdεB

∣∣∣∣
ε=0

(2.116)

=
1

2
C±ωP (A,B)

∑

µ

(ηAµ +
1

2

∑

ν

Fµνt
A
ν )tBµ , (2.117)

with the frequency condition, ωA + ωB = 0, and where the symmetrization operator,

C±ωf(ωA, ωB) = f(ωA, ωB) + f(−ωA,−ωB)∗ (2.118)

is necessary in CC theory to ensure the correct symmetry of the response functions.

tAν and tBµ are the Fourier components of the expanded time-dependent CC amplitudes

and the other intermediates (ηA and F) are given in table 2.2.

An analysis of the linear response function in eq. (2.117) shows that its poles (i.e.,

the CC excitation energies) correspond to the eigenvalues of the CC Jacobian matrix,40
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JRm = ωmRm, (2.119a)

LmJ = Lmωm, (2.119b)

where the right (R) and left (L) eigenvectors can be different since the CC Jacobian

matrix J, defined in table 2.2, is in general not symmetric. This means that CC

excitation energies as defined in response theory are not guaranteed to be real. How-

ever, whenever HF theory provides a good reference electronic configuration, the CC

Jacobian is nearly symmetric and real CC excitation energies are obtained.

CC transition strengths, obtained as residues of the CC linear response function

are given by,40

SA,B0m =
1

2

[
TA0mT

B
m0 + (TB0mT

A
m0)∗

]
, (2.120)

where the left and right transition moments can be written as,

TAm0 =
∑

µ

Lmµ ξ
A
µ , (2.121)

TA0m =
∑

µ

(
ηAµR

m
µ + M̄m

µ ξ
A
µ

)
, (2.122)

where we have introduced the transition moments Lagrangian multipliers M̄m
µ which

can be determined from the following response equation,

M̄m(ωm1 + J) + (Rm)TF = 0. (2.123)

We note that the oscillator strength corresponding to a transition from the ground

state to the m-th excited state can be obtained directly as,

f0m =
2

3
ωm

∑

i=x,y,z

Sθi,θi0m , (2.124)

where we have set VA and VB to be components of the electric dipole operator.

Summary and other approaches

To summarize, for the calculation of CC excitation energies, the ground state time-

independent CC amplitudes have to be obtained as detailed in section 2.3. Indeed,

the ground state amplitudes are required to calculate the CC Jacobian matrix (see

table 2.2) which needs to be diagonalized to obtain the CC excitation energies. If

only the excitation energies are desired then only one (right or left) of the eigenvalue

problems in eq. (2.119) has to be solved.

For the calculation of CC transition strengths, more response equations have to be

solved. The ηA and F tensors for example depend on the ground state Lagrangian
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multipliers which are obtained from the following linear equation,

t̄J + η = 0, (2.125)

where η is also given in table 2.2. The optimization of the transition moment La-

grangian multipliers from eq. (2.123) is also required, and both the right and left

Jacobian eigenvectors in eq. (2.119) are needed.

The formalism and equations presented here are applicable to all standard CC

models such as the CCS and CCSD models but also to CCPT models like the CC2

model presented in section 2.4.2. The working equations for the calculation of ex-

citation energies and oscillator strengths at the CC2 level are derived in details in

appendix A.

Finally, we note that CC excitation energies identical to the one obtained from

linear response theory can be obtained through the equation-of-motion (EOM)-CC

formalism.22,23,41,42 In EOM-CC theory, the excited states are parametrized from the

ground state as a linear expansion,

|ΨEOM-CC
m 〉 =

∑

µ

Rmµ τµ |CC〉 = exp(T )
∑

µ

Rmµ τµ |HF〉 , (2.126)

where the ground state |ΨEOM-CC
0 〉 = |CC〉 is recovered by taking τ0 = 1. Inserting

|ΨEOM-CC
m 〉 in the time-independent Schrödinger equation in eq. (2.72) and projecting

against 〈µ| exp(−T ) leads to,

∑

ν

〈µ| exp(−T )H exp(T ) |ν〉Rmν = ECC
m

∑

ν

〈µ|ν〉Rmν (2.127)

∑

ν

(
〈µ| exp(−T )H exp(T ) |ν〉 − ECC

0 δµν

)
Rmν = (ECC

m − ECC
0 )Rmµ (2.128)

where it can then be shown that eq. (2.128) is equivalent to the right Jacobian eigen-

value problem in eq. (2.119a),

∑

ν

JµνR
m
ν = ωmR

m
µ , (2.129)

Jµν = 〈µ| exp(−T )H exp(T ) |ν〉 − ECC
0 δµν . (2.130)

CC excitation energies obtained from EOM-CC or linear response approaches are thus

identical. However, the calculation of molecular properties and transition strengths

differs between the two formalisms. In this work, we use expressions for the oscillator

strengths derived from response theory since EOM-CC expressions41 have been shown

to lack size-intensivity.43,44
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3.1 Introduction

Single reference CC theory, as described in section 2.3, is well established in electronic-

structure theory and is very successful for the calculation of energies and molecular

properties of relatively small systems dominated by a single electronic configuration.

However, the computational scaling of the CC models with the system size prohibits its

application to large systems. For example, one of the largest conventional CCSD(T)

calculation, i.e., with an O(N7) scaling, was performed on a cluster of 20 water

molecules,45 while, for the MP2 model, which scales as O(N5), a conventional cal-

culation was reported on two nanographene sheets (C150H30)2.46 Both of these calcu-

lations relied on massively parallel implementations which ran on super-computers and

everyday applications of those models are generally targeting much smaller molecules.

In order to perform high accuracy CC calculations on molecular systems containing

several hundred atoms like proteins, it is thus crucial to design new theoretical models

with lower computational requirements.

The dynamical correlation effects described in CC calculations can be divided into

two contributions, (i) the Coulomb hole, which is a short-range effect and corresponds

to the electrostatic repulsion of electrons, and (ii) dispersion effects, which can be

classically interpreted as (induced-) dipole interactions and have a more long-range

character. Dispersion forces are well known to decay as R−6 with the inter-dipole

distance R, and all the correlation effects can thus be considered of local nature.47

The locality of dynamic correlation suggests that a linear-scaling formulation of CC

methods should be possible for large enough systems and finding the optimal way

to design such models is one of the most important challenges of modern electronic-

structure theory.48

CC theory is most commonly formulated in terms of HF canonical molecular or-

bitals (CMOs) which are in general delocalized over the whole system [see figure 3.1(a)]

and thus prevents the introduction of local approximations. As mentioned in sec-

tion 2.2, canonical HF theory corresponds to a specific solution of the HF optimization

condition in which the Fock matrix is diagonal. However, only the occupied-virtual

and virtual-occupied blocks of the Fock matrix are required to be zero and this flex-

ibility in the occupied-occupied and virtual-virtual blocks of the Fock matrix can be

used to generate local orbitals. To this end, different procedures have been suggested,

including, e.g., Pipek-Mezey49 and Boys50,51 strategies. The general idea is to de-

fine a localization function that describes in some way the locality of orbitals and to

minimize that function subject to orthogonality constraints. For example, the Boys

localization function corresponds to the sum of the orbitals’ second central moment,

ξSM
1 =

∑

p

〈φp| (r− 〈φp| r |φp〉)2 |φp〉 . (3.1)

As an extension to the Boys localization function, powers of the second52 and fourth53
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(a) Virtual (top) and occupied (bottom)

canonical molecular orbitals.

(b) Virtual (top) and occupied (bottom) lo-

cal molecular orbitals.

Figure 3.1: Comparison of canonical and localized Hartree–Fock molecular orbitals for a

graphene sheet (C106H28) in a cc-pVDZ basis. The local orbitals have been obtained via

minimization of the square of the second central orbital moments (the least local orbitals

have been plotted). A contour value of 0.02 a.u. was used.

central moments have proven to result in more homogeneous and more local orbitals

[see figure 3.1(b)],54

ξSM
m =

∑

p

〈φp| (r− 〈φp| r |φp〉)2 |φp〉m , (3.2a)

ξFM
m =

∑

p

〈φp| (r− 〈φp| r |φp〉)4 |φp〉m . (3.2b)

While localized occupied orbitals have been available for several decades, the gener-

ation of local virtual orbitals has been more problematic and it is only recently that

new minimization algorithms have solved this issue.55 As an alternative to orthog-

onal localized virtual orbitals, non-orthogonal orbitals have been introduced in the

context of local CC methods. We can for example mention projected atomic orbitals

(PAOs),56 orbital-specific virtuals (OSVs),57 and pair natural orbitals (PNOs).58,59

In this chapter, we consider some of the state-of-the-art local CC methods with

particular emphasis on the divide–expand–consolidate (DEC) scheme which is the

central concept of the work described in the articles attached in appendices B.1 to B.5.

3.2 The Divide–Expand–Consolidate scheme

This section was used as a first draft for part of the manuscript in appendix B.1.

DEC is a massively parallel and linear-scaling algorithm designed for the calculation

of CC energies and properties of large molecular systems. It takes advantage of the

locality of correlation effects via localized and orthogonal occupied and virtual HF
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orbitals and a partitioning of the energy into independent fragment contributions. In

the following sections we summarize the overall DEC strategy when combined with

the MP2, CCSD, and CCSD(T) models.

3.2.1 Energy partitioning

For standard CC models like CCSD, CCSDT, etc., the CC correlation energy is given

by,

Ecorr
CC =

∑

aibj

(tai t
b
j + tabij )Liajb (3.3a)

=
∑

aibj

Eabij . (3.3b)

If a basis of local orbitals is used in eq. (3.3a), both the integrals and the amplitudes

will reflect the locality of correlation effects and for large systems, many contributions

to Ecorr
CC can be discarded.47,48 For the integrals we have,

giajb =

∫∫
φi(r1)φa(r1)

1

r12
φj(r2)φb(r2)dr1dr2, (3.4)

where for local orbitals, the charge distribution φiφa vanishes as the distance between

the two orbitals increases, i.e., a two-electron integral giajb is non-vanishing if orbital

a is close to i and orbital b is close to j.5 The amplitudes are directly affected by the

decay of the integrals, since the most important contribution to the doubles amplitudes

is proportional to giajb [see eq. (2.57)].

The first step in setting up the main equations of the DEC scheme is to assign

each orbital to its closest atomic site (denoted as P, Q, R . . . ), based on the distance

between the center of charge of the orbital and the positions of the nuclei. We denote

the set of occupied (virtual) orbitals assigned to atomic site P as P (P ), see also

figure 3.2. This orbital assignment is then used to partition the energy into atomic

fragment (EP ) and pair fragment (EPQ) contributions,

Ecorr
DEC =

∑

P

[EP +
∑

Q>P

EPQ], (3.5)

EP =
∑

ij∈P

∑

ab

Eabij , (3.6a)

EPQ =
(∑

i∈P
j∈Q

+
∑

i∈Q
j∈P

) ∑

ab

Eabij . (3.6b)

This formulation of the CC correlation energy is still exact but is now well suited

for local approximations. Indeed, we can now use the decaying behavior of the charge

distributions described above to restrict the summation over virtual indices in eq. (3.6)
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[P]

[P]
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Q

Q

[Q]
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Figure 3.2: Schematic illustration of the different orbital spaces defined in a DEC calculation

for a linear molecule.

such that only non-vanishing contributions are included. Of course the exact behavior

of the integrals and amplitudes cannot be known beforehand and the important set

of virtual orbitals associated to a given pair of occupied orbitals is thus unknown.

However, due to the locality of correlation effects, including the virtual orbitals closest

to atom P is a natural choice. We thus denote a set of virtual orbitals assigned to

atomic sites in the vicinity of site P as [P ] (see figure 3.2) and the final formulation

for the DEC fragment energies becomes,

EP =
∑

ij∈P

∑

ab∈[P ]

Eabij (3.7a)

EPQ =
(∑

i∈P
j∈Q

+
∑

i∈Q
j∈P

) ∑

ab∈[P ]∪[Q]

Eabij . (3.7b)

We now see that, eqs. (3.5) and (3.7) provide a way to calculate the CC correlation

energy that scales quadratically with the system size, assuming that the set of virtual

orbitals in [P ] corresponds to a small fraction of the total orbital space for all sites P .

However, the pair fragment energies EPQ are expected to describe dispersion forces

and to decay as R−6
PQ with the inter-atomic distance, which can be understood from

a multipole analysis of the integrals giajb whenever the two charge distributions, φiφa

and φjφb, are not overlapping.60 The number of pair fragment energy contributions

can therefore be truncated such that it scales linearly in the limit of large systems,

which renders eq. (3.5) a priori linear-scaling.

Let us now illustrate how this formulation can be extended to non-standard CC

models such as the MP2 and CCSD(T) models. The DEC-MP2 model is trivially

obtained by setting the singles amplitudes to zero,

Eabij ≡ tabij Liajb, (3.8)

while, for the CCSD(T) model, we split the DEC energy into a CCSD contribution

given by eq. (3.5) and a (T) correction which is further divided into the fourth- and a

fifth-order terms presented in section 2.4.3. From eq. (2.68), we see that the fourth-
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order term can be partitioned in analogy with the standard CC energy,

E
[4]
P = 2

∑

ij∈P

∑

ab∈[P ]

(2tabij − tabji ) ∗T abij (3.9a)

E
[4]
PQ = 2

(∑

i∈P
j∈Q

+
∑

i∈Q
j∈P

) ∑

ab∈[P ]∪[Q]

(2tabij − tabji ) ∗T abij , (3.9b)

while for the fifth-order term, we chose the following partitioning,7

E
[5]
P = 2

∑

i∈P

∑

a∈P
tai
∗T ai (3.10a)

E
[5]
PQ = 2

(∑

a∈P
i∈Q

+
∑

a∈Q
i∈P

)
tai
∗T ai . (3.10b)

Note that the equations for the fifth-order contributions do not contain any reference

to the virtual spaces [P ] and are therefore exact whenever the singles amplitudes

and the (T) intermediates are calculated in the complete orbital space. For further

considerations regarding the formulation of DEC for the MP2 and CCSD(T) models,

we refer to appendices B.3 and B.4, respectively.

3.2.2 Atomic fragment optimization

In the previous section, we have presented expressions for calculating the correlation

energy of various CC models in a basis of local MOs. The DEC energy expressions

are expected to yield linear-scaling algorithms provided that, (i) the virtual spaces [P ]

can be significantly reduced compared to the complete virtual space, (ii) the number

of pair fragment energies EPQ to be calculated can be reduced to scale linearly with

the system size.

In this section we will consider how the virtual spaces [P ] can be obtained to ensure

error control in the fragment energies, while the screening of pair fragments [point (ii)]

will be considered in section 3.2.3.

In order to understand how the fragment energies can be calculated and how the

orbital spaces can be optimized we introduce the energy orbital space (EOS), i.e., the

space in which the atomic fragment energy is calculated in eq. (3.7a),

PEOS ≡ P ∪ [P ]. (3.11)

The CC amplitudes used in the DEC energy expression for a given fragment EP

are required to couple with the amplitudes used in all the surrounding fragments.

Therefore, it is not possible to simply solve the CC amplitude equation in PEOS without

introducing additional coupling errors.
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This coupling errors can be corrected by solving the CC amplitude equations in an

extended space called the amplitude orbital space (AOS),

PAOS ≡ [P ] ∪ [P ], (3.12)

where, by analogy with the virtual spaces, [P ] denotes the set of occupied orbitals

assigned to atomic sites in the vicinity of center P (see figure 3.2). Note that the

coupling effects in the virtual space have been considered by implicit expansion of

space [P ] used in eq. (3.11) which thus implies PEOS ⊂ PAOS. Assuming [P ] and [P ]

to be known, the calculation of the atomic fragment energy EP can be performed as

follows,

1. Solve the CC amplitude equations in the restricted space, PAOS.

2. Extract the CC amplitudes from PAOS to PEOS.

3. Calculate the two-electron integrals in PEOS.

4. Use the CC amplitudes and integrals in PEOS to calculate the atomic fragment

energy using eq. (3.7a).

The strategy used in DEC to obtain the spaces [P ] and [P ] leading to atomic and

pair fragment energies of predefined accuracy can be divided into two steps: a fragment

expansion step, followed by a fine-tuning reduction step. Let us consider the fragment

energy EP and the determination of the optimal spaces [P ] and [P ]. In the fragment

expansion, a list of all the local molecular orbitals is dressed based on an estimation

of the importance of each orbital to the unknown fragment energy EP . Due to the

locality of correlation effects, the distance between a given orbital and the atomic site

P is an obvious choice to build the list but other measurements such as the numerical

overlap of the orbitals or the Fock matrix elements could be used. Primary spaces ([P ]

and [P ]) are then set up by considering a minimal number of (occupied and virtual)

orbitals from the priority list. The fragment energy associated with those spaces is

then calculated according to the recipe outlined above. The orbital spaces are then

expanded based on the priority list and an improved fragment energy is calculated.

This process is repeated until the difference between the last two fragment energies is

below a user-defined threshold, the so-called fragment optimization threshold (FOT).

The fragment expansion procedure is illustrated in the left part of figure 3.3.

In principle, the fragment expansion could be performed for all atomic fragments

and the expanded spaces could be used for the pair fragment calculations, i.e., building

the pair equivalent of the AOS as,

PQAOS ≡ PAOS ∪QAOS, (3.13a)

solving the CC amplitude equations in PQAOS and calculating the pair fragment en-

ergies using eq. (3.7b). However, it is clear that the pair fragment orbital spaces can
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Figure 3.3: Illustration of the fragment optimization procedure, EP is the atomic fragment

energy associated to atomic site P , PAOS denotes the space in which the CC amplitude

equations are solved and the FOT is a user-defined threshold.

become significantly larger than the atomic fragment spaces and many more pair frag-

ments than atomic fragments have to be considered. This two factors indicate that any

reduction in the size of the pair fragment orbital spaces will result in significant com-

putational savings in the total DEC calculation. Furthermore, in order to avoid false

convergence in the fragment expansion (i.e., converging to artificially too small orbital

spaces) many orbitals need to be added to the fragment in each step of the expansion.

As a consequence, the fragment expansion results in large orbital spaces and atomic

fragment energies with error much smaller than the FOT. The large orbital spaces

then propagate to the pair fragment energy calculations which become unpractical. A

fragment reduction strategy is therefore employed on the expanded orbital spaces by

relying on a binary search algorithm to remove unimportant orbitals without intro-

ducing errors larger than the FOT. The determination of the fragment orbital spaces

is summarized in figure 3.3 and is considered in greater details in appendix B.2.

Finally, we note that for DEC-CCSD or DEC-CCSD(T) calculations (i.e., when

the targeted correlation energy is the CCSD or CCSD(T) correlation energy), the

fragment optimization can be performed at the MP2 level, while only the fragment

energies in the reduced orbital spaces are calculated at the targeted level of theory.

3.2.3 Pair fragment screening

As mentioned before, the DEC partitioning of the CC correlation energy is expected

to lead to a linear-scaling algorithm whenever the number of pair fragments scales

linearly with the system size. We now illustrate, how an efficient screening strategy

allows for a linear-scaling number of pairs to be calculated.
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Figure 3.4: Decay of the MP2 pair fragment energies |EPQ| with the pair distance RPQ for

the titin-I27SS molecule (392 atoms) using a cc-pVDZ basis set (3772 basis functions). The

expected R−6
PQ pair decay is also plotted. The pair fragment energies are separated into the

calculated “final” pairs (in green) and the pairs screened away by the pair screening procedure

(in blue). The molecular geometry was taken from Ref. 61.

The simplest way to reduce the number of pair fragment energies is to use a real-

space cut-off, i.e., if the distance between two atomic site RPQ is greater than a

distance threshold, e.g., Rscreen = 10 Å, then the corresponding pair fragment is

screened away and the pair energy EPQ is not calculated. Two issues arise with

such strategy, (i) the number of pair fragment energies calculated is independent of

the FOT and in order to converge to the standard CC correlation energy, both the

FOT and Rscreen would have to be tuned, (ii) the pair fragment energies for a given

pair distance can spread over several orders of magnitude (see figure 3.4), hence, a

significant number of the pairs included with a real-space threshold are less relevant

than some of the pairs screened away. Those issues can be bypassed by considering a

pair screening strategy based on an estimation of the pair fragment energies.

In DEC, we therefore calculate pair energy estimates at the MP2 level and using

minimal orbital spaces in eq. (3.7b). The orbital spaces are chosen such that the pair

energy estimates Eesti
PQ recover 80-95% of the “exact” MP2 pair fragment energies, while

being very cheap in terms of computational efforts. Once the pair energy estimates

have been calculated, the screening strategy proceeds as follows.

1. Order all pair energy estimates associated with a given site P ,

|Eesti
P1 | ≤ |Eesti

P2 | · · · ≤ |Eesti
PN |, (3.14)

where N is the total number of atomic sites in the molecule.
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2. Sum-up the estimated contributions in the list until it adds up to the FOT, i.e.,

find the atomic index IP such that,

max
IP

(1

2

IP∑

Q=1

|Eesti
PQ|

)
≤ FOT (3.15)

3. All pairs EPQ for which Q ≤ IP are then screened away and not calculated.

4. Repeat points 1 to 3 for all atomic sites.

This procedure has been designed to ensure that the error introduced by screening

the pairs associated to a given atomic site would not exceed the FOT. For example,

the energy contribution of a given atomic site to the DEC correlation energy can be

written as,

EP = EP +
1

2

∑

Q6=P
EPQ, ∀ Q > IP . (3.16)

It now becomes apparent that the DEC algorithm allows for an error of the order of

2·FOT for each site P , i.e., 1·FOT in the atomic fragment energy EP , via the fragment

optimization procedure and another 1·FOT for the pair energies EPQ discarded by

the pair screening procedure. Therefore, the absolute error made in the final DEC

correlation energy is expected to grow linearly with the number of sites in the system,

thus yielding a size-intensive recovery of the CC correlation energy. This error analysis

of the pair screening procedure relies on two assumptions, (i) the pair energy estimates

provide a qualitative approximation of the actual pair fragment energies, (ii) the errors

in the final pair fragment energies EPQ are negligible compared to the FOT. While

the first assumption is covered by the typical recovery of the pair energy estimates

(80-95%), the second assumption is also generally satisfied whenever the pair fragment

orbital spaces are constructed as union of the atomic fragment spaces, as suggested in

section 3.2.2.

In figure 3.4, we have plotted the decay of MP2 pair fragment energies with the pair

distance RPQ for the titin-I27SS molecule taken from Ref. 61, (FOT= 10−4 a.u.). The

Table 3.1: MP2 correlation energy Ecorr
MP2 (a.u.) and recovery of the correlation energy (%)

from DEC and conventional calculations on a linear alkane chain C48H98. Time-to-solution

is also reported. See appendix B.3 for computational details.

FOT (a.u.) Ecorr
MP2 (a.u.) Recovery (%) Time (hours)

10−3 −9.0848 99.11 2

10−4 −9.1541 99.87 6

10−5 −9.1646 99.98 23

0 (full) −9.1660 100.0 55



3.2. THE DIVIDE–EXPAND–CONSOLIDATE SCHEME 41

16 24 32 48 64 96 128 160
Number of Carbon atoms

0

10

20

30

40

50

60

T
im

e
 [

h
o
u
rs

]

full MP2

FOT = 10−5 a.u.

FOT = 10−4 a.u.

FOT = 10−3 a.u.

Figure 3.5: Timings of the DEC-MP2 and canonical MP2 algorithms for alkane chains of

increasing length. See appendix B.3 for computational details.

plot shows the difference between the calculated pairs and the pairs that are screened

away by the procedure outlined above. In the titin-I27SS example, only about 13%

of all the pair fragment energies have to be calculated, which represents significant

savings and allows for a linear-scaling algorithm. The linear-scaling and error control

features of the DEC-MP2 algorithm are also illustrated in figure 3.5 and table 3.1 for

linear alkane chains.

3.2.4 Parallelism strategy

As we can see in figure 3.5, the DEC algorithm presented so far, scales linearly with

the system size for large enough systems, i.e., when the orbital spaces are saturated

for a given FOT and when the number of pair fragments that survive the screening

procedure grows linearly. However, due to the coupling effects in the amplitudes, the

orbital spaces can become very large. As a consequence, a large amount of recalculation

is required by the DEC strategy (the fragments overlap) and performing all the atomic

and pair fragment calculations in series will result in a linear-scaling algorithm with

a huge prefactor. In other words, the crossover of the time-to-solution between the

DEC algorithm and a standard CC implementation will only occur for (very) large

systems. Those observations are however dependent on the type of system considered

and, as we can see in figure 3.5, the DEC-MP2 algorithm performs remarkably well

even for linear chains of moderate size. Nonetheless, the range of application of the

DEC scheme can be significantly extended by realizing that the atomic fragment and

pair fragment energy calculations are completely independent of each other and can

therefore be performed in parallel. This feature makes the DEC algorithm particularly

well suited for super-computers and future architectures with many computing units.
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Figure 3.6: Coarse-grained parallelization of the DEC algorithm exemplified with four com-

puting units and six fragment energies to be calculated.

In this section, we introduce the parallelization strategy used in DEC and summarize

the different steps involved in a DEC calculation.

The DEC algorithm has been designed with three different levels of paralleliza-

tion (coarse-, medium-, and fine-grained). The coarse-grained parallelization takes

advantage of the independence of the fragment energy calculations, which can there-

fore be performed at the same time on different computing units. The medium- and

fine-grained parallelizations are not specific to DEC and are designed to accelerate the

solution of the CC amplitude equations inside each fragment energy calculation. In the

following, we therefore focus exclusively on the coarse-grained level of parallelization

and we refer to Ref. 62 and appendices B.3 and B.5 for more details.

At the coarse-grained level, the available computing units are divided into a mas-

ter process, driving the DEC calculation and a set of slaves, executing the work.

Assuming the fragment optimization has already been performed, the master starts

by constructing a joblist where each job (an atomic or pair fragment energy calcu-

lation) is ordered based on an estimation of the workload (the size of the fragment

orbital space). The master then communicates to each slave the information necessary

to calculate a given fragment energy, starting with the largest fragments. Once every

slave has a fragment energy to calculate, the master waits for the results from the

slaves, and distributes the remaining jobs on the list as the slaves become available.

When all the jobs have been distributed, the master waits for all the slaves to finish

and to send their results. Finally, the master calculates the correlation energy based
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on eq. (3.5). The coarse-grained parallelization of DEC is illustrated in figure 3.6.

Since a DEC calculation encompass three levels of parallelization, it is assumed that

each slave in the procedure described above, has access to a subset of computing units

which can be used at the medium- and fine-grained levels. The number of computing

units allocated to each slave is then determined on-the-fly, based on the workload of

the current job. This is important in order to minimize the idling time of all the

computing units. Such a parallelism strategy allows the DEC algorithm to efficiently

utilize several thousand computer nodes as demonstrated in appendices B.3 and B.5.

A typical DEC calculation can be summarized as follows.

1. Perform a conventional HF calculation on the whole system.

2. Localize the HF orbitals, for example, using a minimization of ξSM
2 [see eq. (3.2a)].

3. Assign all localized orbitals to atomic sites, i.e., set up P , Q, R . . . and P , Q, R . . .

4. Perform the atomic fragment optimization procedure at the MP2 level, as illus-

trated in figure 3.3. All the atomic fragments are distributed to all the computing

units.

5. Calculate the estimated MP2 pair fragment energies Eesti
PQ for all pairs (a real-

space conservative threshold can also be used for very large systems, e.g., Rscreen =

30 Å).

6. Perform the atomic fragment and pair fragment energy calculations at the tar-

geted CC level using the coarse-grained parallelization strategy (see figure 3.6).

7. Collect all the fragment energies and calculate the final DEC-CC correlation

energy using eq. (3.5).

Note that point 6 is usually the time-dominating step in a DEC calculation and that

in the case of a DEC-MP2 calculation only the pair fragment energies are calculated

in that step since the atomic fragment energies are already known from the fragment

optimization procedure.

3.3 Selected review of the state-of-the-art

In order to compare the DEC algorithm with other reduced scaling local CC methods,

we now present a brief and non-exhaustive review of some of these methods. In

particular, we focus on the following three strategies, the direct local CC methods, the

cluster-in-molecule (CIM) approach, and the incremental scheme.
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3.3.1 Direct local CC methods

In this section we briefly summarize the direct local CC methods in which the CC

amplitude equations are solved only once for the whole system. For such models, a

reduction in computational scaling is achieved by formulating the CC equations in a

local basis in which a reduction of the number of wave-function parameters (the CC

amplitudes) is possible.

The direct local CC methods employ localized orthogonal MOs for the occupied

space [e.g., Boys orbitals in eq. (3.1)], while the virtual space is usually spanned by

non-orthogonal virtual orbitals. In the family of direct local CC methods, several

strategies have been reported and they mainly differ in their choice of orbitals for the

virtual space. Let us first present the common features of the direct methods using a

generic non-orthogonal virtual basis (ă, b̆, c̆ . . . ) and then discuss the specificities of

each method, including the choice of virtual orbitals.

The basic idea of the direct methods is to set up local domains of virtual orbitals,

denoted [i], for each localized occupied orbital i. The determination of the orbital

domains is dependent on the choice of orbitals for the virtual space and they will

therefore be discussed together. Pair domains [ij], can then be defined as the union of

the single domains, [ij] = [i] ∪ [j] and characterized as strong, weak, or distant pairs.

While distant pairs are usually discarded, weak pairs can be computed at a lower level

of theory than the targeted level (e.g., MP2 instead of CCSD) and only strong pairs

are calculated at the targeted level of theory. The characterization of the pairs can

be done based on real-space cut-offs or preferably calculating estimates of the pair

energies based on multipole expansions,63,64

EOSV-DIP
ij =

8

(Rij)6

∑

ă∈[i]

∑

b̆∈[j]

[
〈φi| r |φă〉 · 〈φj | r |φb̆〉

]2

Fii − εă + Fjj − εb̆
, (3.17)

where a semi-canonical approach is used in the denominator, i.e., the off-diagonal

elements of the occupied Fock matrix have been neglected and the virtual orbitals

have been canonicalized in the orbital domains. Once the orbital and pair domains

have been defined and the strong pairs identified, the cluster operators can be written

as,

T1 =
∑

i

∑

ă∈[i]

tăiEăi, T2 =
1

2

∑

ij

∑

ăb̆∈[ij]

tăb̆ij EăiEb̆j , (3.18)

and the CC amplitude equations become,

Ωăi = 0, ∀ ă ∈ [i], (3.19a)

Ωăb̆ij = 0, ∀ ă, b̆ ∈ [ij], ∀ i, j ∈ {strong pairs}. (3.19b)

The non-orthogonality of the virtual space makes the computation of the CC vector

function significantly more complicated and involve intensive book-keeping. We also
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note that the CC equations above can be generalized to include triple excitations by

introducing triples domains [ijk].65–68 Let us now consider the details regarding the

choice of the non-orthogonal virtual orbitals.

Projected atomic orbitals

As we mentioned in chapter 2, the basis sets {χµ} used to build MOs are often con-

structed from non-orthogonal atomic orbitals which are by definition localized on the

atomic sites. It then seems natural to try to transfer this locality to the virtual space

by projecting the virtual CMOs on the set of AOs to obtain projected atomic orbitals

(PAOs),56,65

|ăµ〉 =
∑

a

|a〉 〈a|µ〉 . (3.20)

The PAOs ăµ can now be used in direct local CC methods as a set of non-orthogonal

and redundant localized virtual orbitals. In PAO-based methods, the orbital domains

[i] are usually defined by considering a set of atoms {A} where orbital i has a large

Löwdin or Mulliken charge. The PAOs that are localized on atoms present in the set

are then included in the orbital domain. The set of atoms {A} can be fixed directly by

a threshold (i.e., all atoms where orbital i has a charge larger than τcharge are included

in the set) or using a Boughton–Pulay completion criterion,69

BP i = 1− |(φi − φ̃i)2|, (3.21)

where φ̃i is expanded in the AOs assigned to the atoms present in the current set {A}
which is increased iteratively until BP i > τBP .

Successful local CC methods based on PAOs have been designed for the MP2,70

CCSD, and CCSD(T) models.65 However, the size of the (pair) domains grow quickly

with the required accuracy and it seems that the community is now moving away from

those methods.64 Nonetheless, PAOs still play an important role in local CC methods

as we will discuss below.

Orbital-specific virtuals

In order to reduce the size of the orbital domains, it is possible to generate a set of

virtual orbitals that are not designed to be local but to efficiently describe correlation

effects. To that end, orbital-specific virtuals (OSVs) can be generated by diagonalizing

the MP2 diagonal pair density matrix,57

D(i)U(i) = n(i)U(i). (3.22)

D
(i)
ab = 2

∑

c

tacii t
bc
ii . (3.23)
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The transformation from canonical virtual orbitals to OSVs is then given by,

|ăi〉 =
∑

a

U
(i)
aăi
|a〉 . (3.24)

Using OSVs, the MP2 pair correlation function,

Eij =
∑

ă,b̆∈[ij]

tăb̆ij Liăjb̆, (3.25)

converges significantly faster than with PAOs, for a given number of virtual orbitals

included in the pair domains [ij].71 This observation suggests that the dimension of

the virtual space can be reduced by employing OSVs compared to PAOs. In OSV-

based local CC methods, the domains [i] can thus be chosen either by ensuring that the

error in the MP2 pair correlation function is below a given threshold or by including a

subset of OSVs with the largest eigenvalues n
(i)
ăi

. Linear-scaling implementation of the

MP2,57,72 CCSD,71 and CCSD(T)67 methods employing OSVs for the virtual space

have been reported.

Pair natural orbitals (PNOs)

The virtual space can be further compressed by considering pair natural orbitals

(PNOs), which can be seen as a generalization of OSVs for pairs of occupied or-

bitals. Instead of considering the MP2 diagonal pair density matrix, the complete pair

density matrix is built for all strong pairs,58,59,73

D
(ij)
ab =

1

1 + δij

∑

c

(
t̄acij t

bc
ij + t̄caij t

cb
ij

)
(3.26)

t̄abij = 4tabij − 2tbaij . (3.27)

A diagonalization of the pair density matrix then yields the transformation matrices

required to generate PNOs,

D(ij)U(ij) = n(ij)U(ij), (3.28)

|ăij〉 =
∑

a

U
(ij)
aăij
|a〉 . (3.29)

We note that PNOs usually provide an even more compact representation of the virtual

space than OSVs for a comparable accuracy and that diagonal PNOs are equivalent

to OSVs, |ăii〉 ≡ |ăi〉. Both orbital and pair domains can then be constructed directly

by considering an energy based threshold for the pair correlation function in eq. (3.25)

or by selecting the PNOs directly based on their eigenvalues.

In the above formulation both OSVs and PNOs require the optimization of the

MP2 amplitudes which scale as O(N5), with the system size. Such scaling is not
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acceptable in the context of local CC methods and the usage of OSVs or PNOs seems

to be compromised. However, it is possible to use the PAO domains defined previously

to generate approximated MP2 amplitudes for a specific pair of localized occupied

orbitals,63

tăb̆ij =
găib̆j

Fii − εă + Fjj − εb̆
, ∀ ă, b̆ ∈ [ij]PAO, ∀ i, j ∈ {strong pairs} (3.30)

Using the amplitudes in eq. (3.30) to generate OSVs and PNOs removes the described

bottlenecks without significant impact on the final set of virtual orbitals.

PNO-based local CC methods have become more and more popular in recent years

and very efficient implementation have been reported for the MP2,74,75 CCSD,63 and

CCSD(T)66,68,76 models. In order to achieve linear-scaling for all operations, a frame-

work has been developed74,76 to take advantage of the sparsity of the matrices and to

facilitate the extensive book-keeping required by PNO methods. One of the key com-

ponents of direct local CC methods is the use of density-fitting (DF) approximations

for the two-electron integrals. In DF techniques like the resolution-of-the-identity77,78

or Cholesky decomposition,79,80 the four-center two-electron integrals are factorized

into three-center coefficients,

gaibj =
∑

I

BIaiB
I
bj , (3.31)

where the auxiliary index I runs over all non-redundant pairs of basis functions which

scale linearly with the system size. Factorization techniques like DF have become

very common in electronic-structure programs (e.g., to reduce the computational and

storage requirements of two-electron integrals) and are crucial for PNO-based methods

in which a very large number of integral transformations is performed.63

All in all, direct local CC methods can provide an accurate way of calculating CC

correlation energies in a linear-scaling fashion. The price to pay for the compactness of

the wave-function which leads to the reduction of the computational effort is a much

more complex CC residual optimization routine. While such complexity is not com-

patible with embarrassingly parallel implementations, some parallel performances can

be achieved by relying on more important communication phases.64 We also note that

the disk/memory requirements of the direct method scales linearly with the system

size which can become problematic for very large systems.

3.3.2 Cluster-in-molecule

Let us now discuss a local CC method closely related to DEC, the cluster-in-molecule

(CIM) approach. DEC and CIM rely on the same basic idea, namely, achieving linear-

scaling by partitioning the CC correlation energy expression into a sum of fragment

or cluster contributions. In CIM the partitioning of the energy is done at the orbital
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level,

Ecorr
CC =

∑

i

Ei, (3.32)

where Ei is the correlation energy of the cluster associated with occupied orbital i,

Ei =
∑

j∈{i}

∑

ab∈{i}
(tai t

b
j + tabij )Liajb. (3.33)

This formulation is of course valid only when the occupied and virtual orbital spaces

have been localized in some way and the spaces {i} and {i} thus denote a subset of

occupied and virtual orbitals spatially close to orbital i. In the latest version of CIM

by Li et al.,81 the construction of the clusters, i.e., of the spaces {i} and {i}, can be

summarized as follows.

1. Localize the occupied space using the Boys localization function in eq. (3.1).

2. For a given occupied orbital i, construct the extended occupied space {i} using

a distance cutoff, i.e., include all orbitals j such that Rij < τCIM.

3. The set of basis functions {i}χ used to describe the MOs in {i} are then deter-

mined using the Boughton–Pulay completion criterion, [see eq. (3.21)].

4. The virtual space {i} consists of PAOs obtained by projecting the occupied space

of the full molecule out of the AOs included in the cluster,

|ăµ〉 =
(

1−
full∑

i

|i〉 〈i|
)
|µ〉 , ∀ µ ∈ {i}χ. (3.34)

5. Finally, linear dependencies in the PAO basis are removed and a set of pseudo-

canonical virtual orbitals can be obtained by diagonalizing the Fock matrix in

the PAO space.

Once the clusters have been determined, standard CC calculations can be performed

to obtain all the cluster energies using eq. (3.33). As in the DEC framework, all

the cluster or fragment calculations are independent and can be performed in parallel.

However, we note that in this formulation, the determination of the size of the clusters

is fixed by the real-space cutoff, τCIM, which is therefore independent of the chemical

environment and can lead to results of different quality for different systems. Another

major difference with the DEC scheme concerns the balance between the description

of the Coulomb hole and dispersion effects. Indeed, in CIM both effects are expected

to be covered inside a given cluster (the clusters do not interact) which suggests that

very large clusters might be required to describe dispersion effects properly.

Alternative formulations of CIM have been proposed to circumvent those poten-

tial problems. For example, Kállay and coworkers82 have combined the CIM energy
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partitioning with approximated MP2 natural orbitals to determine the orbital spaces

of the clusters. In this approach, primary spaces are generated based on the strategy

outlined above in which a conservative distance cutoff is used. MP2 amplitudes are

then calculated in the primary spaces in order to compute the following occupied and

virtual density matrices,

D
(i)
jk =

∑

ab

(
2tabji t

ab
ki − tabji tbaki

)
(3.35a)

D
(i)
ab =

1

2

∑

cj

(
3tcaij t

cb
ij + tacij t

bc
ij − tcaij tbcij − tacij tcbij

)
, (3.35b)

which are then diagonalized to provide a set of natural occupied and virtual orbitals.

In the same spirit as for PNOs, the final occupied, {i} and virtual, {i} spaces are then

defined by keeping the natural orbitals with eigenvalues above a given threshold. Such

a strategy allows for a more compact and more rigorous determination of the orbital

spaces in each cluster and has been applied to the calculation of CCSD(T) correlation

energies.82

In a more recent work83 the CIM partitioning of the CC correlation energy has been

modified to include distant pairs explicitly and therefore correct for dispersion effects.

To that end, primary orbital spaces are build based on localized occupied orbitals and

PAOs using a procedure similar to the one described previously. Those primary spaces

are then used to calculate pair correlation energies Eij based on multipole expansions

up to fourth-order (see eq. (3.17) for the first-order expression and Ref. 60 for higher

orders). Each pair ij is then characterized as strong or distant based on the value of

Eij . The extended spaces {i} are then formed by considering all occupied orbitals j

that interact strongly with orbital i. The virtual spaces {i} are then made of PAOs, in

line with the previously outlined strategy. Finally, the cluster energies are evaluated

in the extended spaces using eq. (3.33) and the total correlation energy is given by,

Ecorr
CC =

∑

i

[Ei +
∑

i<j

Eij ], ∀ j ∈ {distant pairs}, (3.36)

where the pair correlation energies Eij are only calculated based on multipole expan-

sions. So far this strategy has only been reported at the MP2 level.83

3.3.3 The incremental scheme

The incremental scheme, originally introduced by Stoll in Ref. 84 for the calculation

of the correlation energy of crystals was later applied to CC theory. It can be seen as

another local CC method based on a partitioning of the CC correlation energy (like

DEC and CIM). As in the CIM approach, the incremental scheme relies on occupied

orbitals localized using the Boys localization function and PAOs for the virtual space.

The occupied orbital space is then divided into single domains S that are determined
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based on a connectivity matrix,

Cij =





108 if Rij ≤ τ and fR−1
ij ≥ 108

fR−1
ij if Rij ≤ τ and fR−1

ij < 108

0 if Rij > τ

(3.37)

where Rij denotes the distance between the center of charge of orbitals i and j, τ is a

distance threshold and f is a constant stretching factor. Once the connectivity matrix

is known, the single domains S are built by joining together a fix number of occupied

orbitals which share large values in the connectivity matrix. We note that, the number

of single domains is defined such that each occupied orbital is assigned to a unique

domain. The virtual orbitals to consider in the domains are then determined as a

subset of PAOs based on the Boughton–Pulay completion criterion in eq. (3.21). Pair

domains D, triple domains T, etc., are then defined as the union of single domains.

Finally, the CC correlation energy is expressed as a many-body expansion,

Ecorr
CC =

∑

S
∆Ecorr

S +
1

2

∑

D
∆Ecorr

D +
1

3!

∑

T
∆Ecorr

T + · · · , (3.38)

where the exact correlation is recovered whenever the largest domain includes the

complete orbital space. To obtain computational savings, the expansion can then be

truncated to a given order (e.g., second-order) and the domain’s contribution to the

correlation energy are then given by,

∆Ecorr
S =Ecorr

S , (3.39a)

∆Ecorr
D =Ecorr

D −∆Ecorr
S1 −∆Ecorr

S2 , (3.39b)

where we have assumed D = S1 ∪ S2 and the energy contribution of a given domain X
is obtained by correlating all electrons in that domain,

Ecorr
X =

∑

aibj∈X
(tai t

b
j + tabij )Liajb. (3.40)

In the incremental scheme, the accuracy is therefore controlled in two different ways, (i)

by changing the order of the expansion in eq. (3.38), and (ii) by changing the number

of occupied orbitals included in the single domains. We note that this measure is not

dependent on the chemical environment of the orbitals which thus limits potential error

control. Various flavors and applications of the incremental scheme have been reported,

including the calculation of MP2, CCSD, and CCSD(T) ground state energies.85–87

3.4 Conclusion

In this chapter we have presented some of the most important and recent developments

in local CC methods with emphasis on the DEC scheme which is at the center of the
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articles attached in appendices B.1 to B.5. A number of other methods have been

developed with the aim of reducing the cost of CC calculations. However, for clarity,

only the methods most closely related to the DEC scheme have been discussed here.

Enabling CC calculations on large molecules is a very active field and, as described

in the previous sections, some remarkable advances have already been achieved. DEC

stands out of the other local CC methods in two main points, (i) the DEC algorithm

has been designed for super-computers and in that sense it is targeting the computers

of tomorrow, (ii) the usage of local orthogonal virtual orbitals is specific to DEC and

enables a number of attractive features such as the compatibility with conventional CC

implementations (inside the fragments) and the calculation of molecular gradients.88,89

At this point, the application of the DEC-CCSD and DEC-CCSD(T) models to very

large systems has not been possible due to size of the (pair) fragments. In order to

remove those limitations, more approximations have to be introduced, such as relying

on PNOs inside the fragments or performing a reduction of the pair fragments with a

lower level CC model as it is done for the atomic fragments.

One aspect of electronic-structure calculation that lies outside the scope of this

thesis is the convergence of the calculations with respect to the one-electron basis sets.

Nonetheless, it is important to mention that most of the local CC methods, (including

DEC),90 have been developed in connection with explicitly correlated techniques to

enable faster convergence to the complete basis set limit.
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4.1 Introduction

The electronic ground state correlation energy—which was at the center of the previ-

ous chapter—is a size-extensive property, i.e., it scales together with the size of the

system.91,92 This indicates that any algorithm that attempts to calculate correlation

energies has to scale at least linearly with the system size, as described in chapter 3.

In contrast, transition properties, such as excitation energies and oscillator strengths,

are size-intensive quantities, i.e., they are independent of the system size.43,93 For

electronic transitions localized to a small part of a molecule, it should therefore be

possible to calculate the associated transition properties with a computational cost

that is independent of the system size.

However, electronic transitions are not necessarily local and it is common to have

transitions that are delocalized over many atomic sites.94 In addition, the character

of a given transition (i.e., how it modifies the electronic density) cannot be known

in advance. It is therefore not straightforward to apply the local approximations

presented in the previous chapter to obtain accurate CC transition properties for all

kinds of electronic transitions.95 Until now, the calculation of transition properties

of large molecules has thus been dominated by more affordable alternatives to CC

response theory, such as time-dependent density-functional-theory (TDDFT).33 The

limitations of DFT methods are well known96–98 and it is therefore important to

extend the applicability of CC response calculations to larger molecules.

The development of approximations to CC theory for the calculation of transition

properties has become more and more active in the past 15 years. In the next sections,

we briefly review some of those recent developments with emphasis on the LoFEx

strategy which is presented in detail in the articles attached in appendices B.6 to B.8.

4.2 A local framework for calculating excitation en-

ergies

In this section, we present a local framework for calculating excitation energies de-

noted LoFEx. The main strategy of LoFEx is to generate a reduced set of orthogonal

MOs designed for the description of a specific electronic transition. A standard CC

calculation carried out in that reduced space should then result in an accurate CC ex-

citation energy and oscillator strength. In LoFEx the reduction of the computational

effort thus follows straightforwardly from the reduction of the occupied and the virtual

orbital spaces.
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4.2.1 Mixed orbital space

As pointed out previously, one important issue encountered when designing reduced

scaling methods for calculating excitation energies is that the character of a given

transition is a priori unknown. However, this information can often be obtained from

low-level computational models such as CIS, and the concept of natural transition

orbitals (NTOs) can be used to compress that information. NTOs are obtained by

performing a singular-value-decomposition (SVD) of the one-particle transition density

matrix b,99,100

bai = 〈Ψm|Eai |Ψ0〉 , (4.1)

where Ψ0 and Ψm denote the electronic ground and excited states and are typically

obtained from the HF and CIS methods, respectively. The transformation matrices

from CMOs to NTOs are then given by the following eigenvalue problems,

Do,CISUo = noUo

Dv,CISUv = nvUv

Do,CIS
ij =

∑
a baibaj

Dv,CIS
ab =

∑
i baibbi

(4.2)

where the eigenvalues in the diagonal matrices no and nv give an estimation of the

importance of a given NTO to describe the transition associated with the matrix b.

In addition, the NTOs’ eigenvalues have the following properties,

nop = nvp > 0

nvp = 0

1 ≤ p ≤ No
No < p ≤ Nv

(4.3)

where No (Nv) denotes the number of occupied (virtual) orbitals and we have assumed

No < Nv. Most of the transitions of interest are dominated by single-electron replace-

ments and for such transitions, the eigenvalues corresponding to pairs of NTOs are

generally such that one of them is much larger than the others. In those cases, one

pair of NTOs is therefore describing most of the transition effects and we have,

n1 ' 1

No∑

p=2

np � 1. (4.4)

NTOs have been almost exclusively used as a post-processing tool, i.e., to analyze

the character of electronic transitions described by a given wave-function (e.g., CIS or

TDDFT).100–103 In LoFEx however, we suggest to use CIS-NTOs to design a reduced

orbital space in which a conventional CC calculation of transition properties can be

performed. The CIS model, like HF, formally scales with the fourth power of the

system size, but by employing adequate screening techniques, it is possible to achieve

near linear-scaling,104 and CIS-NTOs can therefore be generated for large systems.

CIS-NTOs provide the most compact description of the excitation described by the

CIS transition density matrix. However, they do not contain any information about
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occupied virtual

U vU o

~U v~U o

(ordering)

Orbital space generation

~r p

Excitation energy ω(n-1) converged

|ω(n)
 - ω(n-1)| < τω

XOS(n)  →ω(n)
   

|ω(2)
 - ω(1)| > τω

XOS(1)  →ω(1)
   

XOS(2)  →ω(2)
   

XOS optimization

Figure 4.1: Summary of the LoFEx algorithm. The matrices Uo and Uv transform the

occupied and virtual canonical molecular orbitals (CMOs in red) to natural transition orbitals

(NTOs in blue). The dominant pair of NTOs is preserved, while the remaining orbitals are

transformed to a local basis (LMOs in green) via the Ũo and Ũv matrices. The mixed orbital

space is ordered according to r̃p in eq. (4.5). Standard CC calculations are then performed on

reduced excitation energy spaces (XOSs) of increasing dimensions until the excitation energy

is converged.

correlation effects. For that reason, choosing a reduced set of orbitals for the correlated

CC calculation as a subset of CIS-NTOs is likely to result in large and unpredictable

errors.

In LoFEx, we therefore use the dominant pair of CIS-NTOs (the one with the

largest singular-value) to obtain information about the main character of the targeted

transition and the rest of the orbital space is localized, to enable an efficient description

of correlation effects. After the CIS eigenvalue problem has been solved for all the

transitions of interest, such a mixed orbital space (NTO/LMO) can be generated for

each transition as depicted in the left part of figure 4.1.

4.2.2 XOS optimization

The mixed orbital space detailed in the previous section constitutes a set of orthogonal

orbitals particularly well adapted to describe a specific transition. So far, the orbital

space has not been reduced and a standard CC calculation in that space would be

as expensive as in the complete canonical basis. In order to reduce the dimension of

the mixed orbital space, the orbitals are ordered based on an estimated measure of

their importance to describe the electronic transition of interest. Due to the locality

of correlation effects, we use the effective distance r̃p between a given LMO p and the
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dominant pair of NTOs,

r̃p = min
A

(
rAp

QCIS-NTO,o
A

,
rAp

QCIS-NTO,v
A

)
, (4.5)

where index A denotes atomic sites, rAp corresponds to the distance between the center

of charge of a local orbital p and atomic center A, and QCIS-NTO,o
A and QCIS-NTO,v

A are

the Löwdin atomic charges (with values between 0 and 1) of the dominating occupied

and virtual NTOs on center A, respectively. This effective distance is thus small if the

center of orbital p is close to an atom where one (or both) of the CIS-NTOs have a

large Löwdin charge. In other words, the smaller r̃p is, the more important orbital p

is expected to be to describe the targeted transition.

It is now possible to select a subset of orbitals with the smallest values r̃p and to

perform a standard CC calculation in that space to obtain the corresponding excitation

energy and oscillator strength. This reduced space is denoted the excitation orbital

space (XOS) and the CC response equations presented in section 2.5 and in appendix A

can be solved in the XOS without further complications. For the CC2 model, it is

however advantageous to move to a pseudo-canonical representation by diagonalizing

the Fock matrix in the XOS such that expressions with orbital energies remain valid.

In figure 4.2(b), we have plotted the convergence of the lowest CC2 excitation energy of

dodecanoic acid with the size of the XOS. We see that, as expected, increasing the size

of the XOS based on eq. (4.5) results in a smooth and fast convergence of the targeted

excitation energy. However, it is not possible to know in advance how many orbitals

should be included in the XOS to provide excitation energies with a controlled and

limited error. To circumvent this problem, an optimization of the XOS is performed

in which the XOS is increased iteratively until the variation in the excitation energy

is below an energy threshold τω [see figure 4.1 (right)].

From figure 4.1, we note that the last CC calculation in the XOS optimization is

used to provide a reference value for the excitation energy ω(n−1) calculated in the

previous step, i.e., ω(n−1) can be considered converged to the desired accuracy. In

general, it is of course more appropriate to report the values corresponding to ω(n)

since they are expected to be more accurate. However, for the calculation of CCSD

excitation energies and CC2 oscillator strengths, the optimization of the XOS can be

performed based on the CC2 excitation energy only, while the more expensive parts

of the calculation (i.e., the response equations for the CC2 oscillator strength or the

solution of the CCSD eigenvalue problem) can be performed only once in the converged

space (XOS(n−1)). Such a strategy will result in more important computational savings

with limited effects on the quantities of interest (see appendices B.7 and B.8 for more

details).
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Figure 4.2: Left: virtual (top) and occupied (bottom) dominant CIS natural transition or-

bitals for the lowest transition of dodecanoic acid. A contour value of 0.02 a.u. was used.

Right: Convergence of the lowest CC2 excitation energy of dodecanoic acid with the size of

the excitation energy space (XOS) using a mixed orbital space (CIS-NTOs/LMOs).

4.2.3 Numerical illustrations

In the articles in appendices B.6 to B.8, we have shown that LoFEx can indeed be

used to obtain accurate CC2 and CCSD excitation energies as well as CC2 oscillator

strengths at a reduced computational cost. For example, we have calculated the

lowest excitation energy and oscillator strength of the bivalirudin molecule (293 atoms

and 4255 basis functions) at the CC2 level. The targeted transition is localized to a

small part of the molecule and thus constitutes a best case scenario for LoFEx. In

fact, LoFEx proved to be faster than TDDFT in that particular case (see table 4.1

and appendix B.8). For the calculation of CCSD excitation energies, computational

savings are expected to be even more important due to the higher scaling of CCSD

compared to CC2.10 However, the errors in the CCSD excitation energies depend on

the quality of the CC2 optimized XOSs and larger errors are expected whenever the

CC2 and CCSD models differ significantly (e.g., for Rydberg states105,106).

In table 4.2, we have reported a few representative results obtained with LoFEx

when targeting CC2 excitation energies and oscillator strengths. In terms of accuracy,

the results presented in table 4.2 are very satisfactory and confirm the black-box

character of LoFEx with a strong error control. On the other hand, the computational

savings obtained with LoFEx compared to conventional CC2 calculations are very

system and transition dependent. Important speed-ups can be obtained (e.g., 34 for

met-enkephalin) but a reduction of the computational cost is not guaranteed. For

example, the 11-cis-retinal molecule has a strongly delocalized electronic-structure
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Table 4.1: Comparison of LoFEx and TDDFT/CAMB3LYP calculations of the lowest exci-

tation energy ω and oscillator strength f of bivalirudin in an aug-cc-pVDZ’ basis (293 atoms

and 4255 basis functions). Timings are also reported. See appendix B.8 for computational

details.

Method ω (eV) f Time (hours)

CC2-LoFEx 4.82 0.028 157

TDDFT/CAMB3LYP 5.01 0.029 205

Table 4.2: Lowest CC2 excitation energy ω and oscillator strength f obtained from LoFEx

in an aug-cc-pVDZ’ basis. The errors δ and speed-ups compared to conventional CC2 calcu-

lations are also reported. See appendix B.8 for computational details.

System ω (eV) δω (eV) f δf Speed-up

11-cis-retinal 2.14 0.00 1.384 0.000 0.61

Leupeptin 4.27 0.01 0.001 0.000 3.37

Latanoprost 5.08 0.00 0.001 0.000 16.8

Met-enkephalin 4.78 0.00 0.024 0.002 34.0

which leads to the delocalized electronic transition represented by the dominant pair of

CIS-NTOs in figure 4.3(a). In such a case, the complete set of LMOs has to be included

in the XOS to properly correlate the dominant pair of CIS-NTOs, which prevents any

computational savings with LoFEx (see table 4.2). This result is even more evident

from figure 4.3(b) (blue curve), where a calculation of the lowest excitation energy

of 11-cis-retinal is performed in a reduced mixed orbital space, which is progressively

increased by adding LMOs based on eq. (4.5).

4.2.4 Generalized NTOs

In order to obtain computational savings even for systems with delocalized electronic

transitions, such as 11-cis-retinal, we have investigated the possibility to generate

NTOs that include information about the electronic correlation effects. If the CC2

Jacobian eigenvalue problem has been solved for the entire molecule we can consider

a generalization of the CIS density matrices in eq. (4.2) as,

Do,CC2
ij =

∑

a

RaiRaj +
1

2

∑

abk

RabikR
ab
jk, (4.6a)

Dv,CC2
ab =

∑

i

RaiRbi +
1

2

∑

ijc

Racij R
bc
ij , (4.6b)
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Figure 4.3: Left: virtual (top) and occupied (bottom) dominant CIS natural transition or-

bitals for the lowest transition of 11-cis-retinal. A contour value of 0.02 a.u. was used.

Right: Convergence of the lowest CC2 excitation energy of 11-cis-retinal with the size of the

excitation energy space (XOS) using different sets of orbitals.

where R denotes the CC2 right excitation vector. The doubles part of the vector can

be computed on-the-fly as,107

Rabij =
ḡaibj

εi − εa + εj − εb + ωCC2
, (4.7)

where the two-electrons integrals are modified with the singles ground state and ex-

citation amplitudes (see appendix A for details). By solving an eigenvalue problem

for Do,CC2 and Dv,CC2 in analogy with eq. (4.2), we obtain generalized CC2-NTOs in

which correlation effects have been included through the doubles part of the excitation

vector. In figure 4.3(b) (green curve), we have calculated the lowest CC2 excitation

energy of 11-cis-retinal in an XOS composed of CC2-NTOs only, and where the size of

the XOS is increased progressively by including more CC2-NTOs based on their eigen-

values (the ones with the largest eigenvalues are included first). As we can see, those

generalized CC2-NTOs can be used to reduce the dimension of the orbital space with-

out introducing significant errors, even for the delocalized transition in 11-cis-retinal

and without relying on LMOs. The CC2-NTOs thus provide a much more compact

representation of the CC2 excitation process and the selection of the orbitals to be

included in the XOS can be directly based on the eigenvalues of the density matrices

in eq. (4.6). However, such a strategy will not result in any computational savings

for the calculation of CC2 excitation energies, since a solution of the CC2 eigenvalue

problem in the full space is required to obtain the CC2-NTOs.

In order to obtain computational savings also when CC2 excitation energies are
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targeted, we consider the following approximations to eq. (4.6),

D
o,CIS(D’)
ij = Do,CIS

ij +
1

2

∑

ABk

R̃ABik R̃ABjk , (4.8a)

D
v,CIS(D’)
ab = Dv,CIS

ab +
1

2

∑

IJc

R̃acIJ R̃
bc
IJ , (4.8b)

where capital indices run over a subset of CIS-NTOs with the largest eigenvalues nCIS
p .

In addition, the doubles excitation vector has been approximated in the spirit of the

CIS(D) model,108

R̃ABij =
ḡAiBj

εi − FAA + εj − FBB + ωCIS
, (4.9a)

R̃abIJ =
ḡaIbJ

FII − εa + FJJ − εb + ωCIS
, (4.9b)

where the two-electron integrals are now only transformed with the CIS excitation

vector and we have used diagonal elements of the Fock matrix instead of orbital ener-

gies when the CIS-NTO basis is used instead of canonical orbitals. The doubles vector

R̃µ2
, can thus be generated directly from CIS information only.

The NTOs obtained by diagonalization of the matrices in eq. (4.8) are expected

to be a good approximation to the generalized CC2-NTOs and we denote them as

CIS(D’)-NTOs. In appendix B.9, we have shown that in the limit of large systems the

computation of the CIS(D’)-NTOs scales as O(N3) with the system size compared to

the generation of CC2-NTOs which scales as O(N5) and requires iterative procedures.

From figure 4.3(b) (red curve) we see that for the lowest state of 11-cis-retinal, the

CIS(D’)-NTOs provide a very good approximation to the CC2-NTOs, which indicates

that computational savings are also possible for transitions with a more delocalized

character.

In order to evaluate the quality of the CIS(D’)-NTOs we have performed a se-

ries of CC2 calculations of excitation energies in an XOS defined by considering a

subset of CIS(D’)-NTOs based on their eigenvalues, n
o,CIS(D’)
p and n

v,CIS(D’)
p . In ta-

ble 4.3, we present a statistical analysis of the results obtained with this new strategy

entitled SNOFLEx (Simplified Natural transition Orbital Framework for Large-scale

coupled-cluster Excitation energy calculations). Three types of calculations are re-

ported (loose, standard, and tight) corresponding to the different thresholds used to

select the CIS-NTOs included in eq. (4.8) and to select the CIS(D’)-NTOs to include

in the XOS. The SNOFLEx strategy is presented in more details in appendix B.9.

Even though the molecules used in our investigation are of limited sizes and often cor-

respond to delocalized transitions (similar to 11-cis-retinal) the results in table 4.3 and

appendix B.9 are very encouraging and indicate that the SNOFLEx strategy can be

used to obtain accurate CC excitation energies for all types of transitions at a reduced

computational cost. For example, when using the standard threshold, excitation en-

ergies with a mean absolute error of 0.01 eV are obtained compared to conventional
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Table 4.3: Statistical analysis of the errors and the speed-ups obtained with the SNOFLEx

strategy, compared to conventional CC2 calculations in an aug-cc-pVDZ’ basis. The loose,

standard, and tight thresholds have been used to determine the CIS(D’)-NTOs and the size

of the XOS. See appendix B.9 for further details.

Measure loose standard tight

Mean absolute error 0.11 0.01 0.00

Max. absolute error 0.28 0.02 0.01

Mean error 0.11 -0.00 -0.00

Standard deviation 0.07 0.01 0.00

Max. speed-up 96.2 54.7 33.5

Min. speed-up 1.5 1.0 0.8

Mean speed-up 6.7 3.9 2.6

CC2 calculations. Those calculations also correspond to a minimum and maximum

speed-up of 1.0 and 54.7, respectively. These large deviations in the speed-ups come

from the fact that the computational savings are very dependent on the size of the

systems considered and that more important savings are usually obtained for larger

molecules.

The use of correlated NTOs instead of the mixed orbital space used in LoFEx leads

to two major simplifications. First, it avoids the localization of orbitals, which can

become problematic or expensive when diffuse basis sets are used, as it is generally

required in excited state calculations. And second, the quality of the CIS(D’)-NTOs

and of their associated eigenvalues seem to be sufficient to select the relevant orbitals

to include in the XOS and the optimization of the XOS is no longer needed. More

importantly, the strategy used in SNOFLEx leads to computational savings for both

local and delocalized transitions and thus overcomes the main limitation of the LoFEx

scheme.

4.2.5 Treatment of multiple states

In a standard CC calculation of excitation energies, the CC Jacobian eigenvalue prob-

lem is solved in a common basis for all transitions of interest which ensure orthogo-

nality between the different states. In the LoFEx and SNOFLEx schemes however,

each excitation energy is obtained by solving a Jacobian eigenvalue problem in the

corresponding restricted XOS. The different XOSs are independent of each other and

can be overlapping or not. It thus becomes important to ensure that, (i) for a given

transition, the optimized eigenvalue corresponds to the targeted transition (the one

used to generate the NTOs), and (ii) the optimized excitation vectors obtained in

different XOSs are orthogonal to each other. In the LoFEx and SNOFLEx schemes,
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these two conditions are ensured by (i) targeting the Jacobian eigenvector that has

the largest overlap with the starting guess provided by the CIS excitation vector, and

(ii) projecting out previously optimized eigenvectors from the XOS of the transition

under consideration to ensure orthogonality between the optimized excitation vectors.

Such a strategy was (partly) introduced in Ref. 9 and enabled the determination of

multiple excitation energies. However, it is clear that the schemes presented here are

very dependent on the quality of the CIS solutions, and transitions that do not appear

in the CIS spectrum will not be recovered by higher level calculations. Improving

our methods for multiple states calculations will thus have to be considered in future

developments. We note however, that this dependence on the starting guess, is a

general problem also present (albeit to a lesser extent) in conventional CC algorithms.

4.3 Selected review of the state-of-the-art

In this section we summarize other local CC methods for electronic transitions, with

a focus on methods closely related to the LoFEx and SNOFLEx schemes. Some of

those methods are extensions of the models introduced in chapter 3 for ground state

calculations, and the details that are in common between the formulations for ground

states and electronic transitions are therefore not repeated here.

4.3.1 Direct local CC methods

Let us first look at two different extensions of the direct local CC methods to the

calculation of CC2 excitation energies. The first one is a multistate approach relying

on PAOs for the virtual orbitals, while the second method is state-specific and uses

PNOs to span the virtual space. The two methods will thus be denoted as PAO-CC2

and PNO-CC2, respectively.

The PAO-CC2 model was introduced in Ref. 109 as a multistate version of the local

CC2 algorithm presented in Ref. 110 (see also the pioneering work reported in Refs.

111–113). The method relies on the possibility to solve the CC2 Jacobian eigenvalue

problem in the singles space only (instead of singles and doubles), as introduced in

Ref. 107 and detailed in appendix A. The CC2 Jacobian eigenvalue problem is thus

formulated as,

∑

ν1

Aeff
µ1ν1(ω)Rν1 = ωRν1 (4.10)

where the effective Jacobian matrix Aeff is given by,

Aeff
µ1ν1(ω) = Aµ1ν1 −

∑

γ2

Aµ1γ2Aγ2ν1
εγ2 − ω

(4.11)
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and the doubles component of the excitation vector can be obtained directly from

eq. (4.7) in a canonical basis. In order to use the locality of correlation effects, a local

basis has to be used, as discussed in chapter 3, and the partitioning of the CC2 equa-

tions described above seems to be compromised. However, a Laplace transformation

of the orbital energy denominator in eq. (4.11) can be used to circumvent this problem

and preserve the partitioning of the CC2 equations in a general (i.e., non-canonical)

basis.109,114

Using these mathematical tricks, it is then possible to solve the CC2 equations in

the complete singles space and to perform local approximations only in the generation

of the doubles quantities (which are time-dominating in conventional CC2 implementa-

tions). As in PAO methods for ground states, the local approximations are introduced

through orbital domains. However, to take into account the potential non-locality of

electronic transitions, the orbital domains need to be adapted to each transition of

interest. A reduced set of important local occupied orbitals is thus defined based on

the single excitations vectors (either from CIS in the first iteration or from CC2 in the

course of the optimization). Pair domains are then constructed from the union of sin-

gles domains with a reduced number of PAOs selected in the same way as for ground

state PAO-based methods (see chapter 3). Since no approximations are introduced in

the singles part of the excitation vector, the CC2 Jacobian eigenvalue problem can be

solved (in the complete singles space) for all transitions of interest at the same time,

which provides more flexibility and less dependence on the starting guess.

Test calculations revealed that the PAO-CC2 approach results in errors well be-

low 0.1 eV compared to conventional CC2 excitation energies. Unfortunately the

authors did not report calculations on systems that cannot be treated with a conven-

tional CC2 implementation and it is thus difficult to quantify the performance of the

method.109,115,116

We now turn our attention to the generalization of PNO-based methods to the cal-

culation of excitation energies. The generation of PNOs as presented in chapter 3, i.e.,

based on approximated MP2 doubles amplitudes is not appropriate for a description

of electronic transitions. Excited states PNOs can however be generated in a similar

way, i.e., by considering the CIS(D) doubles excitation vector, as suggested in Refs.

117 and 118, which can be approximated by relying on an intermediate PAO or OSV

basis,

Răb̆ij =
ḡăib̆j

Fii − Făă + Fjj − Fb̆b̆ + ωCIS
∀ ă, b̆ ∈ [ij]PAO/OSV, (4.12)

where the two-electrons integrals are transformed with the CIS excitation vector. Once

the CC2 ground state equations have been solved in the ground state PNO basis,

the Jacobian eigenvalue problem can be solved by restricting the indices of doubles

quantities to the excited state PNO basis. Since the PNOs are specific to a given

transition, an optimization procedure is repeated for each transition of interest, and



4.3. SELECTED REVIEW OF THE STATE-OF-THE-ART 65

the Jacobian matrix is deflated, i.e., all previously determined states are used to shift

the corresponding eigenvalues in the spectrum and avoid collapsing to already known

transitions.118 The excited state PNO basis is also updated whenever the overlap

between the starting guess for the singles vector and the current singles excitation

vector is too small.

Such a PNO-based CC2 model has shown promising results compared to a con-

ventional implementation, both in terms of accuracy and computational cost.118 We

note that, the algorithm is not specific to CC2 and can be extended to higher coupled

cluster models or alternative second-order approximations.119

4.3.2 The incremental scheme

The incremental scheme presented in chapter 3 for ground state energies has also

been applied to other properties, including first-order properties,120 and frequency-

dependent dipole polarizabilities.121 In this section, we summarize the application of

the incremental scheme to the calculation of CCSD excitation energies as presented in

Ref. 122.

In the incremental scheme the canonical occupied HF orbitals are first transformed

to a mixed orbital space similar to the one used in LoFEx, i.e., CIS-NTOs are calcu-

lated and the dominant occupied NTO is kept unaltered, while the remaining occupied

orbitals are localized using the Pipek-Mezey method.49 The mixed orbital space used

in LoFEx was in fact inspired by Ref. 122. However, we note that in the incremental

scheme, the virtual space is spanned by CMOs.

Once the mixed occupied orbital space has been generated, it is divided into single

domains based on the distance between the orbitals’ center of charge, such that each

domain includes a predetermined number of occupied orbitals. The CC excitation

energy corresponding to the current NTO is then expanded in a many-body series as,

ω = ωS +
∑

D
(ωD − ωS) + · · · (4.13)

where S denotes the single domain that includes the dominant occupied NTO, while

D denotes a pair domain built from the union of S with another single domain. The

excitation energy contributions ωX are then obtained by solving the CCSD eigenvalue

problem in the restricted domain X. We note that, since CMOs are used to span the

virtual space, the complete set of virtual orbitals is included in each domain. For

the calculation of several excitation energies, a root-homing strategy is employed to

track the eigenvector with the largest overlap with the CIS starting guess, ensuring

convergence to the correct state.

The incremental scheme with a two-body expansion has been tested on a set of

small and medium-sized photoactive systems and compared to conventional CCSD

results. Even though the complete set of virtual orbitals was included in each domain,
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Figure 4.4: Schematic representation of the orbital space partitioning and excitation mani-

folds in multilevel coupled cluster theory. White block: occupied orbitals. Grey block: virtual

orbitals. Blue arrow: excitations described by TX . Red arrows: excitations described by TY .

Occ

Virt

Occ

Virt

{X} {Y }

TX

TY

TY

the calculations presented in Ref. 122 resulted in some computational savings but

with an average and maximum absolute deviations from the standard CCSD results of

0.08 and 0.3 eV, respectively. No improvements or extensions of this implementation

have been reported so far.

4.3.3 Multilevel CC theory

In contrast with the direct local CC methods and the incremental scheme presented in

the previous sections, the multilevel CC (MLCC) models have been designed specifi-

cally for the calculation of size-intensive properties such as excitation energies.

The basic idea of MLCC is to split the orbital space into subspaces determined

based on their estimated importance to describe a given property. The cluster operator

T is then partitioned into components that affect only some of the orbital subspaces

and that can then be determined at different CC levels. For example, in the MLCC

model entitled extended CC2 (ECC2),123 the orbital space is divided into two parts

({X} and {Y }, where {X} is assumed to be more important than {Y } for describing

the targeted property) and the wave-function is written as,

|ECC2〉 = exp(TX + TY ) |HF〉 , (4.14)

where TX performs excitations between orbitals included in {X}, while TY is allowed

to perform excitations between orbitals included in {Y } and between the two spaces

{X} and {Y }, as described in figure 4.4.

The MLCC amplitude equations are then defined by projecting the MLCC Schrödinger
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equation against the different excitation manifolds,

〈µX | exp(−TX − TY )H exp(TX + TY ) |HF〉 = 0, (4.15a)

〈µY | exp(−TX − TY )H exp(TX + TY ) |HF〉 = 0, (4.15b)

where the first equation determines the CC amplitudes in TX , while the second equa-

tion determines TY . In the ECC2 model, both operators TX and TY perform single

and double excitations from the HF reference state, but in TY the doubles are approx-

imated to be correct to first-order in the fluctuation potential, as in the CC2 model,

while the doubles in TX correspond to CCSD doubles.

Effectively, MLCC enables the description of different parts of a system at different

CC levels, while maintaining couplings between all CC amplitudes. Such a strategy

thus allows a high-level of description at a reduced computational cost. However,

the choice of the MO basis and the partitioning of the orbital space is not obvious

and usually relies on chemical intuition, which limits error control and the black-box

character of standard CC theory is lost. Two main orbital space partitionings have

been reported, (i) a selection based on orbital energies in the canonical basis (i.e.,

frontier orbitals are chosen for {X}, while {Y } correspond to the remaining orbitals)

and (ii) a partitioning obtained from a Cholesky decomposition of the AO HF density

matrix.124 Several applications have been reported so far, including ECC2 and MLCC3

excitation energies,123,125 as well as core excitation energies.126

4.4 Conclusion and perspective

The development of approximated CC models for the calculation of excitation energies

and other frequency-dependent properties of large molecules is still in its infancy and

a lot of work remains to be done. However, as discussed in this chapter, some progress

has already been achieved and the combination of new computational models with

more efficient computers already extends the calculation of CC excitation energies to

larger molecules.

The LoFEx, SNOFLEx, and MLCC approaches have been designed specifically to

take advantage of the size-intensivity of transition properties which enables a compact

description of the transition effects and leads to important cost reductions. On the

other hand, methods that are based on local CC approximations for ground states

enable a more uniform description of size-intensive and size-extensive properties. This

generality is however limiting the potential savings that can be obtained in the calcula-

tion of transition properties. In addition, we note that transition properties generally

require larger orbital domains than ground state energies, leading to more expensive

computational models.

Several other approximated CC methods have also been reported for the calculation

of transition properties. We can for example mention the reduced virtual space127,128
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and the ONIOM129,130 strategies, which provide a pragmatic way to reduce the com-

putational requirements of CC calculations.

In our perpetual quest for higher accuracy and lower computational cost, it will

become important to address a number of challenges, such as the description of tran-

sitions dominated by more than one-electron replacements, and the treatment of the

various kinds of frequency-dependent properties. More importantly, when targeting

large molecules the density of electronic states becomes so high that several hundred

states have to be computed to describe a significant part of the electronic spectrum.

A conventional approach (diagonalization of the Jacobian matrix) is obviously not

adapted in such cases and the state-specific algorithms often used in local approxima-

tions are even less appropriate. Alternative techniques which enable a description of

electronic spectra without computing each transition individually are clearly needed.

Such methods like damped response theory (also called complex polarization propaga-

tor (CPP) approach)131–133 or explicitly time-dependent approaches,134 are already

available, and a combination of those techniques with local approximations may be

required for a proper description of electronic transitions of large molecules.
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5.1 English

This thesis describes the development of local approximations to coupled cluster (CC)

theory for large molecules. Two different methods are presented, the divide–expand–

consolidate scheme (DEC), for the calculation of ground state energies, and a local

framework denoted LoFEx, for the calculation of electronic excitation energies and os-

cillator strengths. After an introduction to the relevant notions of electronic-structure

theory, the principal aspects of DEC and LoFEx are summarized. For comparison, a

selected review of the state-of-the-art is presented for each domain. This thesis should

serve as an introduction to the work developed and presented in the scientific articles

collected as appendices.

The DEC scheme has been applied successfully to the calculation of MP2, CCSD

and CCSD(T) ground state energies. The intrinsic structure of DEC allows for a

linear-scaling (with system size) and massively parallel implementation of CC theory.

Applications to large molecules have been reported at the DEC-MP2 level but some

limitations remain and prevent efficient and accurate large-scale applications of the

DEC-CCSD and DEC-CCSD(T) models.

Regarding the calculation of electronic transition properties of large molecules,

LoFEx has been introduced and applied to the CC2 and CCSD models. The black-box

character of LoFEx has been demonstrated on medium-sized molecules and significant

computational savings can be obtained depending on the character of the transition

and on the size of the system. LoFEx has also been applied to large molecules with a

computational cost competing with the most commonly used method (TDDFT), while

maintaining CC accuracy. Finally, a new strategy has been proposed to overcome the

main limitations of LoFEx and enable computational savings for all kinds of electronic

transitions.

The development of CC theory for large molecules is still in its infancy, especially

regarding the calculation of frequency-dependent molecular properties. Many chal-

lenges remain to be solved and some of the ideas presented in this thesis will hopefully

open the door to more innovative and creative solutions.
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5.2 Dansk

Denne afhandling beskriver udviklingen af lokale approksimationer til coupled cluster

(CC) teori for store molekyler. To forskellige metoder er blevet præsenteret, i) divide–

expand–consolidate (DEC), til beregning af grundtilstanden korrelation energier, og

ii) LoFEx, et lokal framework til beregning af elektroniske eksitations energier og

oscillator styrker. Efter en introduktion af de relevante begreber i elektron-struktur

teori, er de vigtigste aspekter af DEC og LoFEx beskrevet. Til sammenligning, er en

gennemgang af state-of-the-art for hvert domæne præsenteret. Denne afhandling skal

tjene som en introduktion til arbejdet der er udviklet og præsenteret i de videnskabelige

artikler samlet i appendix.

DEC metoden blevet anvendt med succes til beregning af MP2, CCSD og CCSD(T)

grundtilstands energier. Strukturen af DEC giver mulighed for en linær-skalering

(med systemet størrelse) og massivt parallel gennemførelse af CC teori. Anvendelse

p̊a store molekyler er blevet rapporteret ved DEC-MP2 modeller, men der er stadig

nogle begrænsninger der forhindrer en effektiv og præcis anvendelser af DEC-CCSD

og DEC-CCSD(T) modeller p̊a stor skala.

Til beregning af elektroniske overgangsegenskaber af store molekyler, er LoFEx

metoden blevet introduceret og udviklet for CC2 og CCSD modellerne. Black-box

karakteren af LoFEx er blevet demonstreret p̊a mellemstore molekyler og betydelige

beregningsmæssige besparelser kan opn̊as afhængigt af karakteren p̊a overgangen og

størrelsen af systemet. LoFEx er ogs̊a blevet anvendt p̊a store molekyler, og det er

vist at de beregningsmæssige omkostninger kan konkurrere med de mest almindeligt

anvendte fremgangsm̊ader (TDDFT), under opretholdelse af CC nøjagtighed.

Udviklingen af CC teori for store molekyler er stadig i sin spæde begyndelse, især

med henblik p̊a beregning af frekvensafhængige molekylære egenskaber. Der er stadig

mange udfordringer der skal løses, og forh̊abentlig kan nogle af de ideer der præsenteres

i denne afhandling åbne døren til mere innovative og kreative løsninger.
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A.1 Overview

In section 2.5 we arrived at a set of general equations for the calculation of excitation

energies and transition strengths using CC linear response theory. In this appendix

we go in more details about the form of the equations for the CCS and CC2 models

and derive working equations that can be directly implemented in quantum chemistry

programs. The original goal of this derivation was to recover the working equations

presented in Refs. 107, 135 and to implement them in the LSDalton program.1,2

In the following derivation we focus primarily on the CC2 equations from which

the CCS equations follow straightforwardly. A canonical basis of spin-free HF orbitals

is used throughout the derivations and we assume the ground state amplitudes to be

already optimized, i.e., the following non-linear equations have been solved,

Ωai = 〈ãi | H̃ + [H̃, T2] |HF〉 = 0 (A.1)

Ωabij = 〈ãbij | H̃ + [F, T2] |HF〉 = 0 (A.2)

where the double cluster operator is given by

T2 =
1

2

∑

aibj

tabij EaiEbj . (A.3)

And the following biorthonormal basis is used,

〈
ab
ji

∣∣ = 〈HF|EjbEia, (A.4a)
∣∣ab
ji

〉
= EaiEbj |HF〉 , (A.4b)

〈ãbij | =
1

1 + δai,bj

(
1

3

〈
ab
ij

∣∣+
1

6

〈
ab
ji

∣∣
)
, (A.4c)

〈
ãb
ij

∣∣∣ cdkl
〉

= δaibj,ckdl. (A.4d)

Once the ground state amplitudes have been optimized the calculation of transition

strengths (and excitation energies) requires the determination of the following quan-

tities (see section 2.5).

• The zero-order (frequency-independent) Lagrange multipliers t̄,

t̄J = −η, (A.5)

• the right Jacobian excitation vectors R,

JR = ωR (A.6)

• the left Jacobian excitation vectors L

LJ = Lω (A.7)
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• and the transition moment Lagrange multipliers M̄

M̄
(
J + ω1

)
= −(R)TF (A.8)

where we have dropped the indices denoting the targeted (excited) state. Eqs. (A.5)

and (A.6) must be solved before eq. (A.8) since the right-hand-side of eq. (A.8) depends

on t̄ and R.

A.1.1 The CC2 effective Jacobian

The CC2 Jacobian can be obtained by differentiation of the CC2 vector function with

respect to the ground state amplitudes. To avoid δ factors in the Jacobian we rewrite

the doubles cluster operator as,

T2 =
1

2

∑

aibj

(1 + δijδab)t̆
ab
ij EaiEij (A.9)

where

t̆abij =
1

1 + δijδab
tabij =

1

(1 + δijδab)

g̃aibj
(εi − εa + εj − εb)

(A.10)

The CC2 Jacobian can then be defined as,

Jµiνj =
∂Ωµi

∂t̆νj
(A.11)

Jai,ck = 〈ãi | [H̃, Eck] + [[H̃, Eck], T2] |HF〉 (A.12)

Jai,ckdl = 〈ãi | [H̃, EckEdl] |HF〉 (A.13)

Jaibj,ck = 〈ãbij | [H̃, Eck] |HF〉 (A.14)

Jaibj,ckdl = 〈ãbij | [F,EckEdl] |HF〉 = δaibj,ckdl(εa − εi + εb − εj) (A.15)

Due to the diagonal form of the doubles-doubles block of the CC2 Jacobian, eqs. (A.5)

to (A.8), can be formulated as effective singles equations in which the doubles quanti-

ties are computed on-the-fly. By anticipation, let us introduce the following effective

CC2 Jacobian matrix,

Jeff
ai,bj(ω) =

[
Jai,bj −

∑

ckdl

Jai,ckdlJckdl,bj
εc − εk + εd − εl − ω

]
(A.16)

=

[
Jai,bj +

∑

ckdl

Jai,ckdlJckdl,bj
εk − εc + εl − εd + ω

]
(A.17)

where the summation is not restricted and does not contain a factor half. We note

that eqs. (A.5), (A.7) and (A.8) can be written in the following general form (see

table A.1),

XJ = αωX− β, (A.18)
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Table A.1: General form of the left equations for CC2 transition strengths.

XJ = αωX− β X α β

t̄J = −η t̄ 0 η

LJ = ωL L 1 0

M̄J = −ωM̄− (R)TF M̄ −1 (R)TF

which can be reformulated as,

(X1, X2)

(
J11, J12

J21, ε21

)
= αω(X1, X2)− (β1, β2) (A.19)

where ε2 corresponds to a linear combination of orbital energies such as εa−εi+εb−εj .
From eq. (A.18) we get the following system of equations,




X1J11 +X2J21 = αωX1 − β1

X1J12 +X2ε2 = αωX2 − β2

(A.20)

From the second line we get,

X2(ε2 − αω) = −β2 −X1J12 (A.21)

The doubles can then be computed directly as,

X2 = −β2 +X1J12

ε2 − αω
(A.22)

Using X2 in the first line of eq. (A.20) we get,

X1J11 −
β2 +X1J12

ε2 − αω
J21 = αωX1 − β1, (A.23)

rearranging,

X1

[
J11 −

J12J21

ε2 − αω
− αω

]
= −

[
β1 −

β2J21

ε2 − αω
]
, (A.24)

X1

[
Jeff

11 (αω)− αω
]

= −βeff
1 , (A.25)

Using table A.1, we finally obtain the following effective singles equations,

t̄1J
eff
11(0) = −ηeff

1 , (A.26)

L1J
eff
11(ω) = L1ω, (A.27)

M̄1

[
Jeff

11(−ω) + ω1
]

= −m̄eff
1 , (A.28)
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where,

ηeff
ai = ηai +

∑

ckdl

ηcdklJckdl,ai
εk − εc + εl − εd

(A.29)

m̄eff
ai = m̄ai +

∑

ckdl

m̄cd
klJckdl,ai

εk − εc + εl − εd − ω
(A.30)

with m̄ = (R)TF. A similar expression is easily obtained for the right eigenvalue

problem,

Jeff
11(ω)R1 = ωR1. (A.31)

In order to solve the above equations in a standard quantum chemistry program

we need to obtain working equations for a trial vector b1 contracted with the effective

CC2 Jacobian matrix from the right,

σai =
∑

bj

Jeff
ai,bj(ω)bbj , (A.32)

or from the left,

σ̄ai =
∑

bj

bbjJ
eff
bj,ai(ω). (A.33)

In addition we need explicit expressions for the effective right-hand-sides in eqs. (A.29)

and (A.30). All those quantities are derived in details in the next sections. If the reader

is only interested in the working equations and not in the extremely boring derivations

that follows, we refer to appendix B.8. In the following sections the notation for two-

electrons integrals is extended such that,

gpqrs = (pq|rs) (A.34)

Lpqrs = 2(pq|rs)− (ps|rq). (A.35)

We also make extensive use of the notation and pre-derived quantities in appen-

dices A.8 and A.9 and in boxes 13.1 and 13.2 in page 688 of Ref. 13. Finally, in

appendix A.6 we also derive how all these quantities are used in the calculation of the

transition moments and transition strengths via one-particle density matrices.

A.2 Right-hand-side for the ground state Lagrangian

multipliers

The η matrix is defined as follows,

ηµ =
∂ECC2

∂t̆µ
(A.36)
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where the CC2 correlation energy is introduced as,

ECC2 =
∑

aibj

[tai t
b
j + tabij ][2(ia|jb)− (ib|ja)] (A.37)

=
∑

aibj

[tai t
b
j + (1 + δabδij)t̆

ab
ij ][2(ia|jb)− (ib|ja)] (A.38)

which leads to the following expressions,

ηai =2
∑

bj

tbj [2(ia|jb)− (ib|ja)] = 2F̃ia (A.39)

ηabij =2[2(ia|jb)− (ib|ja)] = 2Liajb. (A.40)

The right-hand-side has thus one contribution corresponding to ηai and a second con-

tribution that requires the contraction of ηabij with the doubles-singles block of the CC2

Jacobian. We introduce the following matrix,

η̄abij = 2
2(ia|jb)− (ib|ja)

εi − εa + εj − εb
(A.41)

and get the final working equation for the right-hand-side of the ground state La-

grangian multipliers as,

ηeff
ai =ηai +

∑

ckdl

ηcdklJckdl,ai
εk − εc + εl − εd

(A.42)

=2F̃ia +
∑

ckdl

η̄cdklJckdl,ai (A.43)

=2F̃ia +
∑

ckdl

η̄cdkl 〈c̃dkl | [H̃, Eai] |HF〉 (A.44)

=2F̃ia +
∑

ckdl

η̄cdkl (ck̃|da)δli −
∑

bj

η̄cdkl (ck̃|il)δad (A.45)

=2F̃ia +
∑

ckd

η̄cdki (ck̃|da)−
∑

ckl

η̄cakl (ck̃|il) (A.46)

A.3 Right linear transformation

In this section we give the working equation for the right linear-transformed vector,

σai =
∑

bj

Jeff
ai,bj(ω)bbj (A.47)
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A.3.1 Part A

σAai =
∑

bj

Jai,bjbbj (A.48)

=
∑

bj

〈ãi | [H̃, Ebj ] + [[H̃, Ebj ], T2] |HF〉 bbj (A.49)

=
∑

bj

〈ãi | [H̃, Ebj ] |HF〉 bbj +
∑

bj

〈ãi | [[H̃, Ebj ], T2] |HF〉 bbj (A.50)

=σA.1ai + σA.2ai (A.51)

σA.1ai =
∑

bj

〈ãi | [H̃, Ebj ] |HF〉 bbj (A.52)

=
∑

bj

F̃abbbjδij −
∑

bj

F̃jibbjδab +
∑

bj

L̃aijbbbj (A.53)

=
∑

b

F̃abbbi −
∑

j

F̃jibaj +
∑

bj

L̃aijbbbj (A.54)

=σ0.1
ai +

∑

ck

[2(kc̃|ai)− (kĩ|ac)]bck (A.55)

=σ0.1
ai + σJai (A.56)

Using the commutator relation in Eq. (A.323),

σA.2ai =
∑

bj

1

2

∑

ckdl

tcdkl 〈ãi | [[H̃, Ebj ], EckEdl] |HF〉 bbj (A.57)

=
∑

bj

1

2

∑

ckdl

tcdkl 〈ãi | [[[H̃, Ebj ], Eck], Edl] |HF〉 bbj

+
∑

bj

1

2

∑

ckdl

tcdkl 〈ãi |Edl[[H̃, Ebj ], Eck] |HF〉 bbj

+
∑

bj

1

2

∑

ckdl

tcdkl 〈ãi |Eck[[H̃, Ebj ], Edl] |HF〉 bbj (A.58)

=
∑

bj

1

2

∑

ckdl

tcdkl 〈ãi | [[[H̃, Ebj ], Eck], Edl] |HF〉 bbj

+
∑

bj

1

2

∑

ck

tcaki 〈HF| [[H̃, Ebj ], Eck] |HF〉 bbj

+
∑

bj

1

2

∑

dl

tadil 〈HF| [[H̃, Ebj ], Edl] |HF〉 bbj (A.59)
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σA.2ai =
1

2

∑

bj

∑

ckdl

tcdkl 〈ãi | [[[H̃, Ebj ], Eck], Edl] |HF〉 bbj

+
∑

bj

∑

ck

tcaki 〈HF| [[H̃, Ebj ], Eck] |HF〉 bbj

=σA.2.1ai + σA.2.2ai (A.60)

where we have used the symmetry of the amplitudes and renaming of dummy indices.

σA.2.1ai =
1

2

∑

bj

∑

ckdl

tcdkl 〈ãi | [[[H̃, Ebj ], Eck], Edl] |HF〉 bbj (A.61)

=− 1

2

∑

bj

∑

ckdl

tcdkl bbjP
bcd
jkl

(
L̃kcjdδabδil

)
(A.62)

=− 1

2

∑

bj

∑

ckdl

tcdkl bbj

(
L̃kcjdδabδil + L̃ldjcδabδik

+ L̃jbkdδacδil + L̃ldkbδacδij + L̃jblcδadδik + L̃kclbδadδij

)
(A.63)

=− 1

2

∑

j

∑

ckd

tcdkibajL̃kcjd −
1

2

∑

j

∑

cdl

tcdil bajL̃ldjc

− 1

2

∑

bj

∑

kd

tadki bbjL̃jbkd −
1

2

∑

b

∑

kdl

tadkl bbiL̃ldkb

− 1

2

∑

bj

∑

cl

tcail bbjL̃jblc −
1

2

∑

b

∑

ckl

tcakl bbiL̃kclb (A.64)

=−
∑

j

∑

ckd

tcdkibajL̃kcjd −
∑

bj

∑

kd

tadki bbjL̃jbkd −
∑

b

∑

kdl

tadkl bbiL̃ldkb (A.65)

σA.2.2ai =
∑

bj

∑

ck

tcaki 〈HF| [[H̃, Ebj ], Eck] |HF〉 bbj (A.66)

=2
∑

bj

∑

ck

tcaki L̃jbkcbbj (A.67)

σA.2ai =σA.2.1ai + σA.2.2ai (A.68)

=2
∑

bj

∑

ck

tcaki L̃jbkcbbj −
∑

j

∑

ckd

tcdkibajL̃kcjd

−
∑

bj

∑

kd

tadki bbjL̃jbkd −
∑

b

∑

kdl

tadkl bbiL̃ldkb (A.69)

=
∑

bj

∑

ck

t̂caki L̃jbkcbbj −
∑

j

∑

ckd

tcdkibajL̃kcjd −
∑

b

∑

kdl

tadkl bbiL̃ldkb (A.70)
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σA.2ai =
∑

ck

t̂caki F̄kc −
∑

j

∑

ckd

tcdkibajL̃kcjd −
∑

b

∑

kdl

tadkl bbiL̃ldkb (A.71)

=
∑

ck

t̂caki F̄kc −
∑

j

baj
∑

ckd

t̂cdki(kc̃|jd)−
∑

b

bbi
∑

kdl

t̂adkl (ld̃|kb) (A.72)

=σI.2ai + σ0.2
ai (A.73)

where we have introduced,

t̂caki =2tcaki − tcaik (A.74)

F̄kc =
∑

bj

L̃jbkcbbj =
∑

bj

[2(jb|kc)− (jc|kb)]bbj (A.75)

A.3.2 Part B

We now look at the other part of the linear-transformed vector and decompose it into

small elements that will be combined at the end.
∑

ck

Jaibj,ckbck =
∑

ck

〈ãbij | [H̃, Eck] |HF〉 bck (A.76)

=
∑

ck

(aĩ|bc)bckδjk −
∑

ck

(aĩ|kj)bckδcb (A.77)

=
∑

c

(aĩ|bc)bcj −
∑

k

(aĩ|kj)bbk (A.78)

∑

bj

Jckdl,bjbbj =
∑

bj

〈c̃dkl | [H̃, Ebj ] |HF〉 bbj (A.79)

=
∑

bj

(ck̃|db)bbjδlj −
∑

bj

(ck̃|jl)bbjδbd (A.80)

=
∑

b

(ck̃|db)bbl −
∑

j

(ck̃|jl)bdj (A.81)

Using the commutator relation in Eq. (A.319) we write,

Jai,ckdl = 〈ãi | [H̃, EckEdl] |HF〉 (A.82)

= 〈ãi | [[H̃, Eck]Edl] |HF〉
+ 〈ãi |Edl[H̃, Eck] |HF〉
+ 〈ãi |Eck[H̃, Edl] |HF〉 (A.83)

=− P cdkl
(
F̃kdδacδil + L̃kildδac − L̃acldδik

)

+ δai,dl 〈HF| [H̃, Eck] |HF〉
+ δai,ck 〈HF| [H̃, Edl] |HF〉 (A.84)

=− F̃kdδacδil − L̃kildδac + L̃acldδik

− F̃lcδadδik − L̃likcδad + L̃adkcδil

+ 2δai,dlF̃kc + 2δai,ckF̃ld (A.85)
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∑

ckdl

Jai,ckdl
∑

bj

Jckdl,bjbbj =

=−
∑

ckdl

∑

b

(ck̃|db)bblF̃kdδacδil −
∑

ckdl

∑

b

(ck̃|db)bblL̃kildδac

+
∑

ckdl

∑

b

(ck̃|db)bblL̃acldδik −
∑

ckdl

∑

b

(ck̃|db)bblF̃lcδadδik

−
∑

ckdl

∑

b

(ck̃|db)bblL̃likcδad +
∑

ckdl

∑

b

(ck̃|db)bblL̃adkcδil

+ 2
∑

ckdl

∑

b

(ck̃|db)bblδai,dlF̃kc + 2
∑

ckdl

∑

b

(ck̃|db)bblδai,ckF̃ld

+
∑

ckdl

∑

j

(ck̃|jl)bdjF̃kdδacδil +
∑

ckdl

∑

j

(ck̃|jl)bdjL̃kildδac

−
∑

ckdl

∑

j

(ck̃|jl)bdjL̃acldδik +
∑

ckdl

∑

j

(ck̃|jl)bdjF̃lcδadδik

+
∑

ckdl

∑

j

(ck̃|jl)bdjL̃likcδad −
∑

ckdl

∑

j

(ck̃|jl)bdjL̃adkcδil

− 2
∑

ckdl

∑

j

(ck̃|jl)bdjδai,dlF̃kc − 2
∑

ckdl

∑

j

(ck̃|jl)bdjδai,ckF̃ld (A.86)

=−
∑

kd

∑

b

(ak̃|db)bbiF̃kd −
∑

kdl

∑

b

(ak̃|db)bblL̃kild

+
∑

cdl

∑

b

(cĩ|db)bblL̃acld −
∑

cl

∑

b

(cĩ|ab)bblF̃lc

−
∑

ckl

∑

b

(ck̃|ab)bblL̃likc +
∑

ckd

∑

b

(ck̃|db)bbiL̃adkc

+ 2
∑

ck

∑

b

(ck̃|ab)bbiF̃kc + 2
∑

dl

∑

b

(aĩ|db)bblF̃ld

+
∑

kd

∑

j

(ak̃|ji)bdjF̃kd +
∑

kdl

∑

j

(ak̃|jl)bdjL̃kild

−
∑

cdl

∑

j

(cĩ|jl)bdjL̃acld +
∑

cl

∑

j

(cĩ|jl)bajF̃lc

+
∑

ckl

∑

j

(ck̃|jl)bajL̃likc −
∑

ckd

∑

j

(ck̃|ji)bdjL̃adkc

− 2
∑

ck

∑

j

(ck̃|ji)bajF̃kc − 2
∑

dl

∑

j

(aĩ|jl)bdjF̃ld (A.87)
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=−
∑

kd

(ak̃|dī)F̃kd −
∑

kdl

(ak̃|dl̄)L̃kild +
∑

cdl

(cĩ|dl̄)L̃acld −
∑

cl

(cĩ|al̄)F̃lc

−
∑

ckl

(ck̃|al̄)L̃likc +
∑

ckd

(ck̃|dī)L̃adkc + 2
∑

ck

(ck̃|aī)F̃kc + 2
∑

dl

(aĩ|dl̄)F̃ld

−
∑

kd

(ak̃|d̄i)F̃kd −
∑

kdl

(ak̃|d̄l)L̃kild +
∑

cdl

(cĩ|d̄l)L̃acld −
∑

cl

(cĩ|āl)F̃lc

−
∑

ckl

(ck̃|āl)L̃likc +
∑

ckd

(ck̃|d̄i)L̃adkc + 2
∑

ck

(ck̃|āi)F̃kc + 2
∑

dl

(aĩ|d̄l)F̃ld (A.88)

=2
∑

ck

(ck̃|aī)F̃kc + 2
∑

ck

(aĩ|ck̄)F̃kc + 2
∑

ck

(ck̃|āi)F̃kc + 2
∑

ck

(aĩ|c̄k)F̃kc

−
∑

ck

(ak̃|c̄i)F̃kc −
∑

ck

(cĩ|ak̄)F̃kc −
∑

ck

(ak̃|c̄i)F̃kc −
∑

ck

(cĩ|āk)F̃kc

−
∑

ckl

(al̃|ck̄)L̃likc +
∑

cdk

(dĩ|ck̄)L̃adkc −
∑

ckl

(ck̃|al̄)L̃likc +
∑

cdk

(ck̃|dī)L̃adkc

−
∑

ckl

(al̃|c̄k)L̃likc +
∑

cdk

(dĩ|c̄k)L̃adkc −
∑

ckl

(ck̃|āl)L̃likc +
∑

cdk

(ck̃|d̄i)L̃adkc (A.89)

=2
∑

ck

(aī|ck)F̃kc −
∑

ck

(ak̄|ci)F̃kc

+
∑

cdk

[
(dĩ|ck̄) + (ck̃|dī) + (dĩ|c̄k) + (ck̃|d̄i)

] [
2(ad̃|kc)− (ac̃|kd)

]

−
∑

ckl

[
(al̃|ck̄) + (ck̃|al̄) + (al̃|c̄k) + (ck̃|āl)

] [
2(lĩ|kc)− (lc̃|ki)

]
(A.90)

=2
∑

ck

(aī|ck)F̃kc −
∑

ck

(ak̄|ci)F̃kc

+ 2
∑

cdk

(dī|ck)(ad̃|kc)−
∑

cdk

(dī|ck)(ac̃|kd)

− 2
∑

ckl

(al̄|ck)(lĩ|kc) +
∑

ckl

(al̄|ck)(lc̃|ki) (A.91)

=
∑

ck

[
2(aī|ck)− (ak̄|ci)

]
F̃kc

+
∑

cdk

[
2(dī|ck)− (dk̄|ci)

]
(ad̃|kc)

−
∑

ckl

[
2(al̄|ck)− (ak̄|cl)

]
(lĩ|kc) (A.92)

where we have introduced the barred transformed integrals,

(pq̄|rs) =P prqs
∑

αβγδ

(X̄αpYβq +XαpȲβq)XγrYδs(αβ|γδ) (A.93)

h̄pq =
∑

αβ

(X̄αpYβq +XαpȲβq)hαβ (A.94)
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X̄αi = 0

Ȳαi =
∑
a Cαab

a
i

X̄αa = −∑i Cαib
a
i

Ȳαa = 0
(A.95)

with C being the canonical MO coefficients. Finally, we get the last contributions to

the linear-transformed vector,

σBai =
∑

ckdl

∑

bj

Jai,ckdlJckdl,bj
εk − εc + εl − εd + ω

bbj (A.96)

=
∑

ck

b̂acik F̃kc +
∑

cdk

b̂dcik(ad̃|kc)−
∑

ckl

b̂aclk (lĩ|kc) (A.97)

=σI.1ai + σGai + σHai (A.98)

where we have introduced the doubles quantity,

b̂abij = 2babij − babji =
2(aī|bj)− (aj |̄bi)

εi − εa + εj − εb + ω
(A.99)

A.3.3 Summary

σai =σ0.1
ai + σJai + σI.2ai + σ0.2

ai + σI.1ai + σGai + σHai (A.100)

σ0.1
ai =

∑

b

F̃abbbi −
∑

j

F̃jibaj (A.101)

σJai =
∑

ck

[2(kc̃|ai)− (kĩ|ac)]bck (A.102)

σI.2ai =
∑

ck

t̂caki F̄kc (A.103)

σ0.2
ai =−

∑

j

baj
∑

ckd

t̂cdki(kc̃|jd)−
∑

b

bbi
∑

kdl

t̂adkl (ld̃|kb) (A.104)

σI.1ai =
∑

ck

b̂acik F̃kc (A.105)

σGai =
∑

cdk

b̂dcik(ad̃|kc) (A.106)

σHai =−
∑

ckl

b̂aclk (lĩ|kc) (A.107)

After rearrangement we get,

σai =σ0
ai + σGai + σHai + σIai + σJai (A.108)

σ0
ai =

∑

b

[
F̃ab −

∑

kdl

t̂adkl (ld|kb)
]
bbi −

∑

j

[
F̃ji +

∑

ckd

t̂cdki(kc|jd)

]
baj (A.109)

σ0
ai =

∑

b

Eabbbi −
∑

j

Ejibaj (A.110)
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σGai =
∑

cdk

b̂dcik(ad̃|kc) (A.111)

σHai =−
∑

ckl

b̂aclk (lĩ|kc) (A.112)

σIai =
∑

ck

[
b̂acik F̃kc + t̂acik F̄kc

]
(A.113)

σJai =
∑

ck

[2(kc̃|ai)− (kĩ|ac)]bck (A.114)

A.4 Left linear transformation

In this section we give the working equation for the left linear-transformed vector,

σ̄ai =
∑

bj

bbjJ
eff
bj,ai(ω) (A.115)

The equations can be derived in the same way as for the right linear-transformed

vector and we thus give only the final equations here,

σ̄ai =σ̄0
ai + σ̄Gai + σ̄Hai + σ̄Iai + σ̄Jai (A.116)

σ̄0
ai =

∑

b

[
F̃ba −

∑

ckl

t̂bclk(kc|la)

]
bbi −

∑

j

[
F̃ij +

∑

cdk

t̂dcjk(kc|id)

]
baj (A.117)

σ̄Gai =
∑

cdk

b̄dcik(ck̃|da) (A.118)

σ̄Hai =−
∑

ckl

b̄aclk (ck̃|il) (A.119)

σ̄Iai =
∑

ck

[2(kc|ia)− (ka|ic)]Cck (A.120)

σ̄Jai =
∑

ck

[2(ck̃|ia)− (cã|ik)]bck (A.121)

where,

b̄abij =
2(iă|jb)− (ib̆|ja) + P abij [2bai F̃jb − baj F̃ib]

εi − εa + εj − εb + ω
(A.122)

Cai =
∑

bj

t̂abij b
b
j (A.123)

and the following integrals have been introduced,

(pq̆|rs) =P prqs
∑

αβγδ

(X̆αpYβq +XαpY̆βq)XγrYδs(αβ|γδ) (A.124)

X̆αi =
∑
aXαab

a
i

Y̆αi = 0

X̆αa = 0

Y̆αa = −∑i Yαib
a
i

(A.125)
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A.5 Right-hand-side of the transition Lagrangian mul-

tipliers

Following the derivations in Ref. 135, let us express the F matrix as,

Fµν =
∂ηµ
∂tν

+
∑

γ

t̄γBγµν , (A.126)

where,

Bµνγ =
∂Jµν
∂tγ

(A.127)

We can now express the right-hand-side of the transition Lagrangian multipliers in

eq. (A.30) as,

m̄eff
ai = m̄A

ai + m̄B
ai + m̄C

ai + m̄D
ai + m̄E

ai (A.128)

m̄A
ai =

∑

bj

Rbj 〈HF| [[H,Ebj ], Eai] |HF〉 (A.129)

m̄B
ai =

∑

bj,ck

t̄bjBbj,ck,aiR
c
k (A.130)

m̄C
ai =

∑

bjck

∑

dl

t̄bcjkBbjck,dl,aiR
d
l (A.131)

m̄D
ai =

1

2

∑

bj

∑

ckdl

t̄bjBbj,ckdl,aiR
cd
kl (A.132)

m̄E
ai =

∑

bjck

m̄bc
jkJbjck,ai

εj − εb + εk − εc − ω
(A.133)

where the doubles right-hand-side vector is now given by,

m̄ab
ij =

∑

ck,dl

t̄ckBck,dl,aibjR
d
l (A.134)

A.5.1 Part A

m̄A
ai =

∑

bj

Rbj 〈HF| [[H,Ebj ], Eai] |HF〉 (A.135)

= 2
∑

bj

Rbj [2(jb|ia)− (ja|ib)] (A.136)

This term is denoted m̄X
ai in our notes and corresponds to eq. (44) in Ref. 135 where

a factor 2 is missing.
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A.5.2 Part B

Bbj,ck,ai =
∂

∂tai
〈̃bj | [H̃, Eck] + [[H̃, Eck], T2] |HF〉 (A.137)

= 〈̃bj | [[H̃, Eai], Eck] |HF〉 + 〈̃bj | [[[H̃, Eai], Eck], T2] |HF〉 (A.138)

= 〈̃bj | [[H̃, Eai], Eck] |HF〉 (A.139)

=− P acik [F̃icδbaδjk +
∑

l

L̃ilkcδbaδjl −
∑

d

L̃dakcδbdδji] (A.140)

=− F̃icδbaδjk −
∑

l

L̃ilkcδbaδjl +
∑

d

L̃dakcδbdδji

− F̃kaδbcδji −
∑

l

L̃kliaδbcδjl +
∑

d

L̃dciaδbdδjk (A.141)

=− F̃icδbaδjk − L̃ijkcδba + L̃bakcδji (A.142)

− F̃kaδbcδji − L̃kjiaδbc + L̃bciaδjk (A.143)

where the second term is zero because of rank-reduction and the fact that the Hamil-

tonian is a two-electron operator (see Ref. 13 for details).

m̄B
ai =

∑

bj,ck

t̄bjBbj,ck,aiR
c
k (A.144)

=
∑

bj,ck

t̄bj 〈̃bj | [[H̃, Eai], Eck] |HF〉Rck (A.145)

=−
∑

bj,ck

t̄bjR
c
kF̃icδbaδjk −

∑

bj,ck

t̄bjR
c
kL̃ijkcδba +

∑

bj,ck

t̄bjR
c
kL̃bakcδji

−
∑

bj,ck

t̄bjR
c
kF̃kaδbcδji −

∑

bj,ck

t̄bjR
c
kL̃kjiaδbc +

∑

bj,ck

t̄bjR
c
kL̃bciaδjk (A.146)

=−
∑

ck

t̄akR
c
kF̃ic −

∑

j,ck

t̄ajR
c
kL̃ijkc +

∑

b,ck

t̄biR
c
kL̃bakc

−
∑

ck

t̄ciR
c
kF̃ka −

∑

j,ck

t̄cjR
c
kL̃kjia +

∑

b,ck

t̄bkR
c
kL̃bcia (A.147)

=−
∑

j

t̄aj

[∑

b

RbjF̃ib +
∑

ck

RckL̃ijkc

]

+
∑

b

t̄bi


−

∑

j

RbjF̃ja +
∑

ck

RckL̃bakc




−
∑

j,ck

t̄cjR
c
kL̃kjia +

∑

b,ck

t̄bkR
c
kL̃bcia (A.148)
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m̄B
ai =−

∑

j

t̄aj F̄ij +
∑

b

t̄bi F̄ba + 2
∑

jc

t̄cj(c̄j̃|ia)−
∑

jc

t̄cj(c̄a|ij̃)

+ 2
∑

bk

t̄bk(b̃k̄|ia)−
∑

bk

t̄bk(b̃a|ik̄) (A.149)

=m̄0.1
ai + 2

∑

bj

t̄bj [(b̄j̃|ia) + (b̃j̄|ia)]−
∑

bj

t̄bj [(b̄a|ij̃) + (b̃a|ij̄)] (A.150)

=m̄0.1
ai +

∑

bj

t̄bj [2(bj |̄ia)− (bā|ij)] (A.151)

=m̄0.1
ai + m̄J

ai (A.152)

where all quantities have been defined implicitly and more details regarding the barred

Fock matrices is given in Appendix A.8.

A.5.3 Part C

Bbjck,dl,ai =
∂

∂tai
〈b̃cjk| [H̃, Edl] |HF〉 (A.153)

= 〈b̃cjk| [[H̃, Eai], Edl] |HF〉 (A.154)

=− P adil [(id̃|ck)δbaδjl + (ij |̃cd)δbaδkl]

+ (ij |̃lk)δbaδcd + (bã|cd)δjiδkl (A.155)

=− (id̃|ck)δbaδjl − (ij |̃cd)δbaδkl

− (lã|ck)δbdδji − (lj |̃ca)δbdδki

+ (ij |̃lk)δbaδcd + (bã|cd)δjiδkl (A.156)

m̄C
ai =

∑

bjck

∑

dl

t̄bcjkBbjck,dl,aiR
d
l (A.157)

=−
∑

ck

∑

dl

t̄aclkR
d
l (id̃|ck)−

∑

jc

∑

dl

t̄acjlR
d
l (ij |̃cd)

−
∑

ck

∑

dl

t̄dcikR
d
l (lã|ck)−

∑

jc

∑

dl

t̄dcjiR
d
l (lj |̃ca)

+
∑

jk

∑

dl

t̄adjkR
d
l (ij |̃lk) +

∑

bc

∑

dl

t̄bcilR
d
l (bã|cd) (A.158)

=−
∑

ckl

t̄aclk (il̄|c̃k̃)−
∑

jcl

t̄acjl (ij̃|c̃l̄)

+
∑

ckd

t̄dcik(d̄a|c̃k̃) +
∑

jcd

t̄dcji (d̄j̃|c̃a)

−
∑

jkd

t̄adjk(ij̃|d̄k̃) +
∑

bcl

t̄bcil (b̃a|c̃l̄) (A.159)
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m̄C
ai =−

∑

ckl

t̄aclk [(il̄|c̃k̃) + (il̃|c̃k̄) + (il̃|c̄k̃)]

+
∑

ckd

t̄dcik [(d̄a|c̃k̃) + (d̃a|c̄k̃) + (d̃a|c̃k̄)] (A.160)

=−
∑

ckl

t̄aclk (il̄|ck) +
∑

ckd

t̄dcik(dā|ck) (A.161)

=−
∑

ckl

t̄aclk (ck̄|il) +
∑

ckd

t̄dcik(ck̄|da) (A.162)

=m̄H.2
ai + m̄G.2

ai (A.163)

A.5.4 Part D

Bbj,ckdl,ai =
∂

∂tai
〈̃bj | [H̃, EckEdl] |HF〉 (A.164)

= 〈̃bj | [[H̃, Eai], EckEdl] |HF〉 (A.165)

Using the commutator in Eq. (A.323), we get,

Bbj,ckdl,ai = 〈̃bj | [[[H̃, Eai], Eck], Edl] |HF〉
+ 〈HF| [[H̃, Eai], Eck] |HF〉 δbdδjl
+ 〈HF| [[H̃, Eai], Edl] |HF〉 δbcδjk (A.166)

=− P acdikl L̃kcidδbaδjl + 2Liakcδbdδjl + 2Lialdδbcδjk (A.167)

=2Liakcδbdδjl + 2Lialdδbcδjk

− L̃kcidδbaδjl − L̃ldicδbaδjk
− L̃iakdδbcδjl − L̃ldkaδbcδji
− L̃ialcδbdδjk − L̃kclaδbdδji (A.168)

m̄D
ai =

1

2

∑

bj

∑

ckdl

t̄bjBbj,ckdl,aiR
cd
kl (A.169)

=
∑

ckdl

t̄dlR
cd
klLiakc +

∑

ckdl

t̄ckR
cd
klLiald

− 1

2

(∑

ckdl

t̄al R
cd
kl L̃kcid +

∑

ckdl

t̄akR
cd
kl L̃ldic +

∑

ckdl

t̄clR
cd
kl L̃iakd

)

− 1

2

(∑

ckdl

t̄ciR
cd
kl L̃ldka +

∑

ckdl

t̄dkR
cd
kl L̃ialc +

∑

ckdl

t̄diR
cd
kl L̃kcla

)
(A.170)
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m̄D
ai =

1

2

∑

ckdl

t̄dl (2R
cd
kl −Rdckl )Liakc +

1

2

∑

ckdl

t̄ck(2Rcdkl −Rdckl )Liald

−
∑

ckdl

t̄al R
cd
kl L̃kcid −

∑

ckdl

t̄ciR
cd
kl L̃ldka (A.171)

=
∑

ckdl

t̄dl R̂
cd
klLiakc −

∑

ckdl

t̄al R̂
cd
kl (kc|id)−

∑

ckdl

t̄ci R̂
cd
kl (ld|ka) (A.172)

=m̄I
ai + m̄0.2

ai (A.173)

A.5.5 Part E

Bck,dl,aibj =
∂

∂t̆abij
〈c̃k| [H̃, Edl] + [[H̃, Edl], T2] |HF〉 (A.174)

= 〈c̃k| [[H̃, Edl], EaiEbj ] |HF〉 (A.175)

We note that Bbj,ckdl,ai = Bbj,ai,ckdl and write the doubles right-and-side as,

m̄cd
kl =

∑

ai,bj

t̄bjBbj,ai,ckdlR
a
i (A.176)

=2
∑

ai

t̄dlR
a
i Liakc + 2

∑

ai

t̄ckR
a
i Liald

−
∑

ai

t̄al R
a
i L̃kcid −

∑

ai

t̄akR
a
i L̃ldic

−
∑

ai

t̄clR
a
i L̃iakd −

∑

ai

t̄ciR
a
i L̃ldka

−
∑

ai

t̄dkR
a
i L̃ialc −

∑

ai

t̄diR
a
i L̃kcla (A.177)

=2t̄dl F̄kc − t̄dkF̄lc + 2t̄ckF̄ld − t̄cl F̄kd
−
∑

ai

t̄al R
a
i Lkcid −

∑

ai

t̄akR
a
i Lldic

−
∑

ai

t̄ciR
a
i Lldka −

∑

ai

t̄diR
a
i Lkcla (A.178)

=P cdkl (2t̄ckF̄ld − t̄cl F̄kd)
− P cdkl (

∑

ai

t̄akR
a
i Licld +

∑

ai

t̄ciR
a
i Lkald) (A.179)

=2(̃kc|ld)− (̃kd|lc) + P cdkl (2t̄ckF̄ld − t̄cl F̄kd) (A.180)

where we have implicitly defined the integrals,

(̃kc|ld) = −P cdkl

(∑

ai

t̄akR
a
i (ic|ld) +

∑

ai

t̄ciR
a
i (ka|ld)

)
(A.181)

By anticipation we define the quantity,

F bcjk =
m̄bc
jk

εj − εb + εk − εc − ω
(A.182)
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and write the E part of the right-hand-side as,

m̄E
ai =

∑

bjck

m̄bc
jkJbjck,ai

εj − εb + εk − εc − ω
(A.183)

=
∑

bjck

F bcjkJbjck,ai (A.184)

m̄E
ai =

∑

bjck

F bcjk 〈b̃cjk| [H̃, Eai] |HF〉 (A.185)

=
∑

bjck

F bcjk

[
(bj |̃ca)δki − (bj |̃ik)δca

]
(A.186)

=
∑

bjc

F bcji (bj |̃ca)−
∑

bjk

F bajk (bj |̃ik) (A.187)

=m̄G.1
ai + m̄H.1

ai (A.188)

A.5.6 Summary

m̄eff
ai =m̄0.1

ai + m̄J
ai + m̄H.2

ai + m̄G.2
ai + m̄I

ai + m̄0.2
ai

+ m̄G.1
ai + m̄H.1

ai + 2m̄X
ai (A.189)

m̄0.1
ai =−

∑

j

t̄aj F̄ij +
∑

b

t̄bi F̄ba (A.190)

m̄J
ai =

∑

bj

t̄bj [2(bj |̄ia)− (bā|ij)] (A.191)

m̄H.2
ai + m̄G.2

ai =−
∑

ckl

t̄aclk (ck̄|il) +
∑

ckd

t̄dcik(ck̄|da) (A.192)

m̄I
ai =

∑

ckdl

t̄dl R̂
cd
klLiakc

=
∑

ck

[2(ia|kc)− (ic|ka)]C̄ck (A.193)

m̄0.2
ai =−

∑

j

t̄aj
∑

bdl

R̂bdjl (ld|ib)−
∑

b

t̄bi
∑

jdl

R̂bdjl (ld|ja) (A.194)

m̄G.1
ai + m̄H.1

ai =
∑

bjc

F bcji (bj |̃ca)−
∑

bjk

F bajk (bj |̃ik) (A.195)

m̄X
ai =

∑

bj

Rbj [2(jb|ia)− (ja|ib)] (A.196)
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After rearrangement we obtain,

m̄eff
ai =m̄0

ai + m̄G
ai + m̄H

ai + m̄I
ai + m̄J

ai + 2m̄X
ai (A.197)

m̄0
ai =

∑

b

t̄bi


F̄ba −

∑

jdl

R̂bdjl (ld|ja)


−

∑

j

t̄aj

[
F̄ij +

∑

bdl

R̂bdjl (ld|ib)
]

(A.198)

=
∑

b

t̄bi Ēba −
∑

j

t̄aj Ēij (A.199)

m̄G
ai =

∑

bjc

F bcji (bj |̃ca) +
∑

ckd

t̄dcik(ck̄|da) (A.200)

m̄H
ai =−

∑

bjk

F bajk (bj |̃ik)−
∑

ckl

t̄aclk (ck̄|il) (A.201)

m̄I
ai =

∑

ck

[2(ia|kc)− (ic|ka)]C̄ck (A.202)

m̄J
ai =

∑

bj

t̄bj [2(bj |̄ia)− (bā|ij)] (A.203)

m̄X
ai =

∑

bj

Rbj [2(jb|ia)− (ja|ib)] (A.204)

A.6 Transition strengths

Transition strengths for a transition from the ground state to the n-th excited state

for the two operators V1 and V2 can be calculated as (see section 2.5),

SV1,V2

0n =
1

2

(
TV1

0nT
V2
n0 + (TV2

0nT
V1
n0 )∗

)
(A.205)

where the left and right transition moments are given by,

TVn0 =
∑

ai

Lai ξ
V
ai +

∑

aibj

Labij ξ
V
aibj (A.206)

TV0n =
∑

ai

ηVaiR
a
i +

∑

aibj

ηVaibjR
ab
ij

+
∑

ai

M̄a
i ξ

V
ai +

∑

aibj

M̄ab
ij ξ

V
aibj . (A.207)

In the following we show how the expressions for the CC2 transition moments can be

reformulated to involve one-particle density matrices.

A.6.1 Introducing the ξ one-particle CC2 density matrix

Let us consider a T1-transformed one electron operator as,

Ṽ =
∑

pq

ṼpqEpq (A.208)
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First we derive expressions for the ξV1 singles matrix,

ξVai = 〈ãi | Ṽ + [Ṽ , T2] |HF〉 (A.209)

=
∑

pq

Ṽpqδapδiq +
1

2

∑

bjck

tbcjk 〈ãi | [Ṽ , EbjEck] |HF〉 (A.210)

=Ṽai + ξV.2ai (A.211)

Using the commutator relation in Eq. (A.319) we write,

ξV.2ai =
1

2

∑

bjck

tbcjk 〈ãi | [Ṽ , EbjEck] |HF〉 (A.212)

=
1

2

∑

ckdl

tcdkl 〈ãi | [[Ṽ , Eck], Edl] |HF〉

+
1

2

∑

ckdl

tcdklδadδil 〈HF| [Ṽ , Eck] |HF〉

+
1

2

∑

ckdl

tcdklδacδik 〈HF| [Ṽ , Edl] |HF〉 (A.213)

=
1

2

∑

ckdl

tcdkl 〈ãi | [[Ṽ , Eck], Edl] |HF〉 +
∑

ck

tcaki 〈HF| [Ṽ , Eck] |HF〉 (A.214)

We now use the relations for one-electron operators against the HF state in Eqs. (A.342)

and (A.343) to write,

ξV.2ai =− 1

2

∑

ckdl

tcdkl Ṽkdδacδil −
1

2

∑

ckdl

tcdkl Ṽlcδadδik + 2
∑

ck

tcaki Ṽkc (A.215)

=− 1

2

∑

kd

tadki Ṽkd −
1

2

∑

cl

tcail Ṽlc + 2
∑

ck

tcaki Ṽkc (A.216)

=− 1

2

∑

ck

tacki Ṽkc −
1

2

∑

ck

tcaik Ṽkc + 2
∑

ck

tcaki Ṽkc (A.217)

=
∑

ck

t̃caki Ṽkc =
∑

ck

t̃cakiVkc (A.218)

By contracting the singles ξV1 matrix with a given singles vector X1 = L1 or M̄1, we

get,

∑

ai

Xa
i ξ
V
ai =

∑

ai

Xa
i Ṽai +

∑

aick

Xa
i t̃
ca
ki Ṽkc (A.219)

=
∑

ai

Xa
i Ṽai +

∑

aick

Xc
k t̃
ac
ik Ṽia (A.220)

=
∑

ai

[
Dξ
ai(X)Ṽai +Dξ

ia(X)Via

]
(A.221)
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where we have implicitly introduced blocks of the one particle ξ density matrix. We

now derive expressions for the ξV2 doubles matrix,

ξVaibj = 〈ãbij | [Ṽ , T2] |HF〉 =
1

2

∑

ckdl

tcdkl 〈ãbij | [Ṽ , EckEdl] |HF〉 (A.222)

Using the commutator relation in Eq. (A.319) and the relations for one-electron oper-

ators against the HF state in Eqs. (A.342) and (A.343), we write,

ξVaibj =
1

2

∑

ckdl

tcdkl 〈ãbij | [[Ṽ , Eck], Edl] |HF〉

+
∑

ckdl

tcdkl 〈ãbij |Edl[Ṽ , Eck] |HF〉 (A.223)

=− 1

2

∑

ckdl

tcdkl 〈ãbij |P cdkl ṼkdEcl |HF〉

+
∑

ckdl

tcdkl 〈ãbij |Edl
∑

e

ṼecEek |HF〉 −
∑

ckdl

tcdkl 〈ãbij |Edl
∑

m

ṼkmEcm |HF〉 (A.224)

=
∑

ckdle

tcdkl Ṽecδaibj,dlek −
∑

ckdlm

tcdkl Ṽkmδaibj,dlcm (A.225)

=
∑

c

tcaji Ṽbc −
∑

k

tbaki Ṽkj (A.226)

By contracting the doubles ξV2 matrix with a given doubles vector X2 = L2 or M̄2,

we get,

∑

aibj

Xab
ij ξ

V
aibj =

∑

aibj

Xab
ij

∑

c

tcaji Ṽbc −
∑

aibj

Xab
ij

∑

k

tbaki Ṽkj (A.227)

=
∑

ab

Ṽab
∑

ijc

Xac
ij t

bc
ij −

∑

ij

Ṽij
∑

abk

Xab
jk t

ab
ik (A.228)

=
∑

ab

ṼabD
ξ
ab(X) +

∑

ij

ṼijD
ξ
ij(X) (A.229)

where we have implicitly introduced two other blocks of the one-particle ξ density

matrix.

A.6.2 Introducing the η one-particle CC2 density matrix

We now derive expressions for the ηV1 singles matrix,

ηVai = 〈HF| [Ṽ , Eai] |HF〉 +
∑

ck

t̄ck 〈c̃k| [Ṽ , Eai] |HF〉

+
∑

ckdl

t̄cdkl 〈c̃dkl | [Ṽ , Eai] |HF〉 +
∑

ckdl

t̄cdkl 〈c̃dkl | [[Ṽ , T2], Eai] |HF〉 (A.230)

=ηV.1ai + ηV.2ai + ηV.3ai + ηV.4ai (A.231)
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ηV.1ai = 〈HF| [Ṽ , Eai] |HF〉 = 2Ṽia = 2Via (A.232)

ηV.2ai =
∑

ck

t̄ck 〈c̃k| [Ṽ , Eai] |HF〉 (A.233)

=
∑

ck

t̄ck
∑

b

Ṽba 〈c̃k|Ebi |HF〉 −
∑

ck

t̄ck
∑

j

Ṽij 〈c̃k|Eaj |HF〉 (A.234)

=
∑

c

t̄ci Ṽca −
∑

k

t̄akṼik (A.235)

ηV.3ai =
∑

ckdl

t̄cdkl 〈c̃dkl | [Ṽ , Eai] |HF〉 = 0 (A.236)

Using the commutator relation in Eq. (A.330), we write,

ηV.4ai =
1

2

∑

a′i′b′j′

ta
′b′
i′j′

∑

ckdl

t̄cdkl 〈c̃dkl | [[Ṽ , Ea′i′Eb′j′ ], Eai] |HF〉 (A.237)

=
∑

a′i′b′j′

ta
′b′
i′j′

∑

ckdl

t̄cdkl 〈c̃dkl |Ea′i′ [[V,Eb′j′ ], Eai] |HF〉 (A.238)

=−
∑

a′i′b′j′

ta
′b′
i′j′

∑

ckdl

t̄cdklP
b′a
j′i Vj′a 〈c̃dkl |Ea′i′Eb′i |HF〉 (A.239)

=−
∑

a′i′b′j′

ta
′b′
i′j′

∑

ckdl

t̄cdkl (Vj′aδckdl,a′i′b′i + Vib′δckdl,a′i′aj′) (A.240)

=−
∑

ckdj′

tcdkj′ t̄
cd
kiVj′a −

∑

ckb′l

tcb
′

kl t̄
ca
klVib′ (A.241)

=−
∑

l

(∑

ckd

tcdkl t̄
cd
ki

)
Vla −

∑

d

(∑

ckl

tcdkl t̄
ca
kl

)
Vid (A.242)

By contracting the singles ηV1 matrix with the right singles excitation vector R1 we

get,

∑

ai

Rai η
V
ai =2

∑

ai

Rai Via +
∑

ai

Rai
∑

c

t̄ci Ṽca −
∑

ai

Rai
∑

k

t̄akṼik

−
∑

ai

∑

l

(∑

ckd

tcdkl t̄
cd
ki

)
VlaR

a
i −

∑

ai

∑

d

(∑

ckl

tcdkl t̄
ca
kl

)
VidR

a
i (A.243)

=
∑

ai

Via

[
2Rai −

∑

l

(∑

ckd

tcdki t̄
cd
kl

)
Ral −

∑

d

(∑

ckl

tcakl t̄
cd
kl

)
Rdi

]
(A.244)

+
∑

ab

Ṽab
∑

i

t̄aiR
b
i −

∑

ij

Ṽij
∑

a

t̄ajR
a
i

=
∑

ai

ViaD
η.1
ia (R) +

∑

ab

ṼabD
η.1
ab (R) +

∑

ij

ṼijD
η.1
ij (R) (A.245)
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where we have implicitly introduced blocks of the one-particle η density matrix. Note

that those blocks are not complete yet. We now derive expressions for the ηV2 doubles

matrix,

ηVaibj =
∑

ck

t̄ck 〈c̃k| [Ṽ , EaiEbj ] |HF〉 +
∑

ckdl

t̄cdkl 〈c̃dkl | [Ṽ , EaiEbj ] |HF〉 (A.246)

=
∑

ck

t̄ck 〈c̃k| [[Ṽ , Eai], Ebj ] |HF〉 +
∑

ck

t̄ck 〈c̃k|Ebj [Ṽ , Eai] |HF〉

+
∑

ck

t̄ck 〈c̃k|Eai[Ṽ , Ebj ] |HF〉 +
∑

ckdl

t̄cdkl 〈c̃dkl | [[Ṽ , Eai], Ebj ] |HF〉

+
∑

ckdl

t̄cdkl 〈c̃dkl |Ebj [Ṽ , Eai] |HF〉 +
∑

ckdl

t̄cdkl 〈c̃dkl |Eai[Ṽ , Ebj ] |HF〉 (A.247)

=
∑

ck

t̄ck 〈c̃k| [[Ṽ , Eai], Ebj ] |HF〉 +
∑

ck

t̄ckδcbδkj 〈HF| [Ṽ , Eai] |HF〉

+
∑

ck

t̄ckδcaδki 〈HF| [Ṽ , Ebj ] |HF〉

+
∑

ckdl

t̄cdkl 〈c̃dkl |Ebj [Ṽ , Eai] |HF〉 +
∑

ckdl

t̄cdkl 〈c̃dkl |Eai[Ṽ , Ebj ] |HF〉 (A.248)

=
∑

ck

t̄ck 〈c̃k| [[Ṽ , Eai], Ebj ] |HF〉 + P abij

[
2t̄bjVia +

∑

ckdl

t̄cdkl 〈c̃dkl |Ebj [Ṽ , Eai] |HF〉
]

(A.249)

=P abij

[
−
∑

ck

t̄ckVibδcaδkj + 2t̄bjVia +
∑

ckdl

t̄cdkl 〈c̃dkl |Ebj [Ṽ , Eai] |HF〉
]

(A.250)

=P abij

[
2t̄bjVia − t̄ajVib +

∑

ckdl

t̄cdkl 〈c̃dkl |Ebj [Ṽ , Eai] |HF〉
]

(A.251)

=P abij

[
2t̄bjVia − t̄ajVib +

∑

ckdl

t̄cdkl
∑

e

Ṽeaδckdl,bjei −
∑

ckdl

t̄cdkl
∑

m

Ṽimδckdl,bjam

]

(A.252)

=P abij

[
2t̄bjVia − t̄ajVib +

∑

d

t̄bdji Ṽda −
∑

l

t̄bajl Ṽil

]
(A.253)

By contracting the doubles ηV2 matrix with the right doubles excitation vector R2 we

get,

1

2

∑

aibj

Rabij η
V
aibj =

∑

aibj

Rabij

[
2t̄bjVia − t̄ajVib +

∑

d

t̄bdji Ṽda −
∑

l

t̄bajl Ṽil

]
(A.254)
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1

2

∑

aibj

Rabij η
V
aibj =

∑

ai

Via
∑

bj

[2Rabij −Rabji ]t̄bj

+
∑

ab

Ṽab
∑

ijc

Rbcij t̄
ca
ji −

∑

ij

Ṽij
∑

abk

Rabik t̄
ba
kj (A.255)

=
∑

ai

ViaD
η.2
ia (R) +

∑

ab

ṼabD
η.2
ab (R) +

∑

ij

ṼijD
η.2
ij (R) (A.256)

where we have implicitly introduced blocks of the one-particle η density matrix. Note

that those blocks are not complete yet.

A.6.3 Summary

The CC2 transition moments can now be expressed in terms of one-particle density

matrices contracted with one-electron T1-transformed integrals,

TV0n =
∑

pq

[Dη
pq(R) +Dξ

pq(M̄)]Ṽpq (A.257)

TVn0 =
∑

pq

Dξ
pq(L)Ṽpq (A.258)

where the one-particle density matrices are given by,

Dξ
ij(X) = −

∑

abk

Xab
jk t

ab
ik (A.259)

Dξ
ia(X) =

∑

ck

Xck t̃
ac
ik (A.260)

Dξ
ai(X) = Xai (A.261)

Dξ
ab(X) =

∑

ijc

Xac
ij t

bc
ij (A.262)

Dη
ij(R) = −

∑

a

t̄ajRai −
∑

abk

t̄abjkR
ab
ik (A.263)

Dη
ia(R) = 2Ria +

∑

ck

t̄ckR̂
ac
ik −

∑

b

(∑

kjc

t̄bckjt
ac
kj

)
Rbi −

∑

j

(∑

cbk

t̄cbjkt
cb
ik

)
Raj (A.264)

Dη
ai(R) = 0 (A.265)

Dη
ab(R) =

∑

i

t̄aiRbi +
∑

ijc

t̄acijR
bc
ij (A.266)

A.7 CCS equations for transition strengths

The CCS equations are obtained directly from the CC2 equations derived in the pre-

vious sections by setting all doubles quantities equal to zero.
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A.7.1 Ground state equations

Let us first consider the ground state equations.

Ωai = 〈ãi | H̃ |HF〉 = 0 (A.267)

= F̃ai = 0 (A.268)

which is solve trivially for tai = 0. Note that this means no T1-transformation and

ECCS = EHF.

A.7.2 CCS Jacobian

Jai,bj =
∂Ωai
∂tbj

= 〈ãi | [H,Ebj ] |HF〉 (A.269)

= (εa − εi)δabδij + Lbjia (A.270)

where we have assumed canonical orbitals. The equation for a right or left linear-

transformed vector is trivially obtain by considering,

σai =
∑

bj

Jai,bjbbj (A.271)

and because the CCS Jacobian is symmetric, the right and left eigenvalue problem

will lead to the same eigenvectors,

Rai = Lai . (A.272)

Note that, the CCS and CIS models are equivalent for ground state and excitation

energies but differ for transition strengths.

A.7.3 The CCS ground state multipliers

Let us now consider the CCS equation for the ground state multipliers,

∑

bj

t̄bjJbj,ai = −ηai , (A.273)

where,

ηai = 〈HF| [H,Eai] |HF〉 (A.274)

which is equal to zero for a HF reference by virtue of the Brillouin theorem. Therefore,

as for the ground state amplitudes, the ground state multipliers are trivially zero,

t̄ai = 0 (A.275)
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A.7.4 The CCS transition moment multipliers

The transition moment multipliers are obtain by solving,

∑

bj

M̄ b
j (ωδabδij + Jbj,ai) = −

∑

bj

RbjFbj,ai, (A.276)

where the F matrix is given by,

Fbj,ai = 〈HF| [[H,Ebj ], Eai] |HF〉 = 2Liajb (A.277)

and all the other quantities are already known.

A.7.5 The CCS transition moments

We now give explicit expression of the CCS transition density matrices and transition

moments by extrapolation of the corresponding CC2 equations. By setting all doubles

quantities to zero as well as,

tai = 0 (A.278)

t̄ai = 0 (A.279)

Rai = Lai (A.280)

we obtain,

Dη
ia(R) = 2Rai (A.281)

Dξ
ai(X) = Xa

i (A.282)

which leads to the following equation for the CCS transition moments,

TV0f =
∑

pq

[Dη
pq(R) +Dξ

pq(M̄)]Ṽpq (A.283)

=
∑

ai

[2Rai + M̄a
i ]Vai (A.284)

where we have used that the dipole integrals are symmetric without the T1 transfor-

mation, Vai = Via.

TVf0 =
∑

pq

Dξ
pq(L)Ṽpq (A.285)

=
∑

ai

Rai Vai (A.286)
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A.8 Expressions for Fock matrices

The standard inactive Fock matrix is defined as,

Fpq =hpq +
∑

i

[2(pq|ii)− (pi|iq)] (A.287)

=
∑

αβ

CαphαβCβq +
∑

αβ

CαpCβq
∑

i

[2(αβ|ii)− (αi|iβ)] (A.288)

=
∑

αβ

CαpFαβCβq (A.289)

which for Hartree-Fock canonical orbitals can be re-written as,

Fij =εiδij (A.290)

Fia =0 (A.291)

Fai =0 (A.292)

Fab =εaδab (A.293)

We now introduce the T1-transformed inactive Fock matrix,

F̃pq =h̃pq +
∑

i

[2(pq̃|ii)− (pĩ|iq)] (A.294)

=
∑

αβ

XαphαβYβq +
∑

αβ

XαpYβq
∑

i

[2(αβ|ĩi)− (αĩ|iβ)] (A.295)

=
∑

αβ

XαphαβYβq +
∑

αβ

XαpYβq
∑

i

[2(αβ|ii)− (αi|iβ)]

+
∑

αβ

XαpYβq
∑

ai

tai [2(αβ|ia)− (αa|iβ)] (A.296)

=
∑

αβ

XαpFαβYβq +
∑

αβ

XαpYβq
∑

ai

tai [2(αβ|ia)− (αa|iβ)] (A.297)

=
∑

αβ

XαpFαβYβq +
∑

ai

tai [2(pq̃|ia)− (pã|iq)] (A.298)

which for Hartree-Fock canonical orbitals can be re-written as,

F̃ij =
∑

αβ

CαiFαβ(Cβj +
∑

b

Cβbt
b
j) +

∑

ck

tck[2(ij |̃kc)− (ic̃|kj)] (A.299)

=εiδij +
∑

ck

tck[2(ij |̃kc)− (ic̃|kj)] (A.300)
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F̃ia =
∑

ck

tck[2(ia|kc)− (ic|ka)] (A.301)

F̃ai =
∑

αβ

(Cαa −
∑

j

Cαjt
a
j )Fαβ(Cβi +

∑

b

Cβbt
b
i )

+
∑

ck

tck[2(aĩ|kc)− (ac̃|ki)] (A.302)

=Fai −
∑

j

tajFji +
∑

b

Fabt
b
i −

∑

bj

tajFjbt
b
i (A.303)

+
∑

ck

tck[2(aĩ|kc)− (ac̃|ki)] (A.304)

=(εa − εi)tai +
∑

ck

tck[2(aĩ|kc)− (ac̃|ki)] (A.305)

F̃ab =
∑

αβ

(Cαa −
∑

j

Cαjt
a
j )FαβCβb +

∑

ck

tck[2(ab̃|kc)− (ac̃|kb)] (A.306)

=εaδab +
∑

ck

tck[2(ab̃|kc)− (ac̃|kb)] (A.307)

We now introduce the inactive Fock matrix transformed with excitation amplitudes,

F̄pq =h̄pq +
∑

i

[2(pq̄|ii)− (pī|iq)]. (A.308)

Using the definition of the barred integrals we get,

F̄ij =
∑

b

Rbj

[
hib +

∑

k

[2(ib̃|kk)− (ik̃|kb)]
]

+
∑

kc

Rck[2(ij |̃kc)− (ic̃|kj)] (A.309)

=
∑

b

RbjF̃ib +
∑

kc

Rck[2(ij |̃kc)− (ic̃|kj)] (A.310)

F̄ia =
∑

kc

Rck[2(ia|kc)− (ic|ka)] (A.311)

F̄ai =
∑

b

Rbj

[
h̃ab +

∑

k

[2(ab̃|kk)− (ak̃|kb)]
]

−
∑

j

Raj

[
h̃ji +

∑

k

[2(jĩ|kk)− (jk̃|ki)]
]

+
∑

kc

Rck[2(aĩ|kc)− (ac̃|ki)] (A.312)

=
∑

b

RbjF̃ab −
∑

j

Raj F̃ji +
∑

kc

Rck[2(aĩ|kc)− (ac̃|ki)] (A.313)
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F̄ab =−
∑

j

Raj

[
hjb +

∑

k

[2(jb̃|kk)− (jk̃|kb)]
]

+
∑

kc

Rck[2(ab̃|kc)− (ac̃|kb)] (A.314)

=−
∑

j

Raj F̃jb +
∑

kc

Rck[2(ab̃|kc)− (ac̃|kb)] (A.315)

A.9 Commutator relations

A.9.1 Relation 1

[H̃, EckEdl] =[H̃, Eck]Edl + Eck[H̃, Edl] (A.316)

[[H̃, Eck], Edl] =[H̃, Eck]Edl − Edl[H̃, Eck] (A.317)

[H̃, Eck]Edl =[[H̃, Eck], Edl] + Edl[H̃, Eck] (A.318)

[H̃, EckEdl] =[[H̃, Eck], Edl] + Edl[H̃, Eck] + Eck[H̃, Edl] (A.319)

A.9.2 Relation 2

[[H̃, Eai], EckEdl] =[[H̃, Eai], Eck]Edl + Eck[[H̃, Eai], Edl] (A.320)

[[[H̃, Eai], Eck], Edl] =[[H̃, Eai], Eck]Edl − Edl[[H̃, Eai], Eck] (A.321)

[[H̃, Eai], Eck]Edl =[[[H̃, Eai], Eck], Edl] + Edl[[H̃, Eai], Eck] (A.322)

[[H̃, Eai], EckEdl] =[[[H̃, Eai], Eck], Edl]

+ Edl[[H̃, Eai], Eck]

+ Eck[[H̃, Eai], Edl] (A.323)

A.9.3 Relation 3

For a given one electron operator,

V =
∑

pq

VpqEpq (A.324)

[[V,EaiEbj ], Eck] =[[[V,Eai], Ebj ], Eck] + P abij ([Eai[V,Ebj ], Eai]) (A.325)

[Eai[V,Ebj ], Eai] =Eai[[V,Ebj ], Eck] + [Eai, Eck][V,Ebj ] (A.326)

=Eai[[V,Ebj ], Eck] + (Eakδci − Eciδak)[V,Ebj ] (A.327)

=Eai[[V,Ebj ], Eck] + Eak[V,Ebj ]δci − Eci[V,Ebj ]δak (A.328)

=Eai[[V,Ebj ], Eck] (A.329)
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Using the cluster commutation relation for one electron operators we get only,

[[V,EaiEbj ], Eck] =P abij Eai[[V,Ebj ], Eck] (A.330)

A.9.4 Relation 4

For a given one electron operator,

V =
∑

pq

VpqEpq (A.331)

we have the following non-zero commutators with single-excitation operators,

[V,Eai] =
∑

pq

Vpq[Epq, Eai] =
∑

pq

VpqEpiδaq −
∑

pq

VpqEaqδpi (A.332)

=
∑

p

VpaEpi −
∑

q

ViqEaq (A.333)

[[V,Eai], Ebj ] =
∑

pq

Vpq[[Epq, Eai], Ebj ] (A.334)

=
∑

pq

Vpq[Epi, Ebj ]δaq −
∑

pq

Vpq[Eaq, Ebj ]δpi (A.335)

=
∑

p

Vpa(Epjδbi − Ebiδpj)−
∑

q

Viq(Eajδbq − Ebqδaj) (A.336)

=−
∑

p

VpaEbiδpj −
∑

q

ViqEajδbq (A.337)

=− VjaEbi − VibEaj (A.338)

=− P abij VibEaj (A.339)

When the commutators are projected against the HF ket state we obtain,

[V,Eai] |HF〉 =
∑

p

VpaEpi |HF〉 −
∑

q

ViqEaq |HF〉 (A.340)

=
∑

j

VjaEji |HF〉 +
∑

b

VbaEbi |HF〉 −
∑

j

VijEaj |HF〉 (A.341)

=2Via |HF〉 +
∑

b

VbaEbi |HF〉 −
∑

j

VijEaj |HF〉 (A.342)

[[V,Eai], Ebj ] |HF〉 =− P abij VibEaj |HF〉 (A.343)
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The Divide-Expand-Consolidate Coupled Cluster Scheme
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DK-8000 Aarhus C, Denmark
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The Divide-Expand-Consolidate (DEC) scheme is a linear-scaling and massively parallel framework for high
accuracy coupled cluster (CC) calculations on large molecular systems. It is designed as a black-box method,
which ensures error control in the correlation energy and molecular properties. DEC is combined with
a massively parallel implementation to fully utilize modern manycore architectures providing a fast time to
solution. The implementation ensures performance portability and will thus easily benefit from new hardware
developments. The DEC scheme has been applied to several levels of CC theory and extended the range of
application of those methods.

INTRODUCTION

Coupled-cluster (CC) theory1 has proven very success-
ful for the calculation of energies and molecular prop-
erties of small molecular systems dominated by a sin-
gle configuration. However, conventional CC calcula-
tions exhibit a high computational scaling with system
size. Even the lowest rung of the CC hierarchy, second-
order Møller-Plesset perturbation theory (MP2), scales
as O(N5), while the highly successful CC singles and
doubles with perturbed triples (CCSD(T)) model scales
as O(N7) where N is a measure of the system size.
This scaling behavior prohibits CC calculations on large
systems of interest in, e.g., biochemistry or materials
science. For example, one of the largest conventional
CCSD(T) calculations was performed on a cluster of 20
water molecules2 (1020 basis functions), while, for the
MP2 model, a calculation was reported on two graphene
sheets (C150H30)2

3,4 (9840 basis functions).
The scaling problems of the conventional CC algo-

rithms originate from the use of delocalized canonical
Hartree–Fock (HF) molecular orbitals to describe elec-
tron correlation effects which are local by nature. Local
electron correlation effects include short-range electron-
electron interactions (the so-called Coulomb holes in the
wave function) and dispersion forces, which decay as R−6

with the distance between induced dipoles. It is thus nec-
essary to abandon the canonical basis and devise local
correlation methods that enable an efficient description
of correlation effects to bypass the scaling wall of con-
ventional CC formulations. We present a brief review of
local correlation methods in the next section.

CC calculations face another problem in addition to
the computational scaling. Conventional CC algorithms
are hard to parallelize and the vast majority of CC cal-
culations today are carried out on laptop computers or
local clusters with a few hundred cores. However, dur-
ing the last decade, the speed of a single computer core
has remained virtually unchanged, while the number of

a)tkjaergaard@chem.au.dk

cores on a typical local cluster has increased dramati-
cally and will continue to do so. The importance of de-
veloping massively parallel algorithms has thus increased
immensely over the last decade, and this development
will accelerate over the next decade where new local
clusters with millions of cores becomes available at uni-
versities and private research institutions. Various mas-
sively parallel conventional CC implementations based on
distributed-memory tensor contraction frameworks have
been presented at substantial implementation effort.5–9

In spite of these impressive implementations the under-
lying scaling of the CC models prohibits large scale CC
calculations.

In order to enable CC calculations for large molecu-
lar systems, the CC algorithms must thus not only ex-
ploit the locality of electron correlation to bypass the
scaling wall of conventional implementations but also ex-
ploit the technological advances of the manycore com-
puter architectures. In other words, the next generation
of CC methods must be both linear-scaling and massively
parallel. For proper utilization of large manycore archi-
tectures the algorithms must be embarrassingly parallel
in the sense that little or no effort is needed to sepa-
rate the problem into a number of parallel tasks. The
Divide-Expand-Consolidate (DEC) scheme,10–23 which is
the subject of this review, is a linear-scaling, massively
parallel, and task-based local correlation method suited
for highly accurate CC calculations on contemporary and
future manycore architectures.

LOCAL CORRELATION METHODS

In this section we briefly review existing local corre-
lation methods for calculating CC energies. A common
feature of local correlation methods is that the corre-
lated calculation is expressed in a local basis and that ap-
proximations are introduced in order to reduce the com-
putational complexity compared to a conventional CC
implementation without introducing unacceptable errors
in the calculated energy. The key to success is to use
a highly local orbital basis and to find a proper bal-
ance between cost and accuracy. We may divide local
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correlation approaches into two subcategories—the wave
function-based approximations and the fragment-based
approximations.

The main philosophy of the wave function-based ap-
proximations is to express the standard CC wave func-
tion ΨCC with a reduced set of parameters,

ΨCC → Ψ̃CC. (1)

The approximations in Ψ̃CC typically involve that the
virtual excitation domain for each pair of occupied lo-
calized molecular orbitals (LMOs) is restricted and that
pair correlation contributions between well separated oc-
cupied LMOs are neglected or approximated in some way.
Given a set of approximations the full molecular CC am-
plitude equations are solved for the approximate wave
function Ψ̃CC to yield the CC amplitudes and correla-
tion energy.

In contrast, for fragmentation-based approximations,
the CC amplitude equations are not solved for the full
molecular system in terms of a single calculation. Rather,
the energy E is divided into fragment energy contribu-
tions Ef ,

E →
∑

f

Ef , (2)

and a calculation on a large molecular system is parti-
tioned into many small and (usually) independent frag-
ment calculations. A set of reduced CC amplitude equa-
tions is solved for each fragment to obtain the fragment
energy Ef , and the fragment energies are added up to
yield the total energy.

The main drawback of the fragment-based approxi-
mations compared to the wave function-based approxi-
mations is that the fragments generally overlap, which
leads to recalculations of many integrals and CC am-
plitudes. On the other hand, the fragment-based ap-
proaches are by design easy to parallelize and therefore
better suited for modern manycore architectures than the
wave function-based approaches. Furthermore, the stor-
age requirements become independent of system size for
fragment-based approaches, while they grow (at least lin-
early) with system size for the wave-function based ap-
proaches, which leads to limitations in the system sizes
than can be treated. Clearly, there are pros and cons of
each approach, and in the following subsections we dis-
cuss the most prominent examples of wave function-based
and fragment-based approximations along with the local
basis employed.

Wave function-based local CC approximations

The wave function-based local CC approximations
originate from the work of Pulay and Sæbø where the CC
calculation was expressed in terms of a set of occupied
LMOs and a set of projected atomic orbitals (PAOs) for
the virtual space.24–27 The method was later refined and

also extended to gradients.28–43 For each pair of occupied
LMOs a local correlation domain containing a subset of
PAOs is assigned. The PAOs constitute a nonorthog-
onal and redundant basis for the virtual orbital space,
and the standard (canonical) CC algorithms must thus
be modified to take this into account.

While the PAO basis allows for significant reductions
in terms of the number of CC amplitudes to consider, the
virtual parameter space may be further compressed using
pair natural orbitals (PNOs),44–49 which are constructed
from (an approximation to) the MP2 correlation density
matrix for each electron pair. For example, the domain
based local PNO (DLPNO) CCSD(T) method46,48 have
been used successfully for many applications within com-
putational chemistry.50–54 Local CC methods relying on
orbital-specific virtuals (OSVs)55,56 have also been devel-
oped and are closely related to PNOs.

Fragmentation-based local CC approximations

The fragmentation-based approaches may be further
subdivided into methods that partition both the HF and
correlated parts of the CC calculation and methods that
partition only the correlated calculation.

Fragment-based HF and correlation approaches

One example of such methods is the divide-and-
conquer (DC) approach, which was originally devel-
oped for HF and density-functional-theory (DFT)57–59

and later extended to CC methods.60–62 In the DC
formalism,59 the one-electron density matrix is con-
structed from subsystem density matrices, thus avoiding
the O(N3) scaling solution of the Roothaan-Hall equa-
tions. The correlated treatment in DC approaches makes
use of subsystem orbitals obtained in the DC variant of
the HF method.

Another contribution to this category is the Fragment
Molecular Orbital (FMO) approach,63 in which a physi-
cal fragmentation of the molecular system is performed.
The fragmentation is done such that bond electron pairs
are preserved when electrons are assigned to fragments.
The FMO approach effectively eliminates memory bot-
tlenecks and have been applied to very large systems.64,65

The algorithm is embarrassingly parallel but the physi-
cal fragmentation puts a limit on the accuracy that may
be achieved.66 Similar physical fragmentation approaches
with (capped) fragments have also been reported.67–75

Fragment-based correlation approaches

As for the wave function-based approximations, the
fragment-based correlation methods rely on a conven-
tional HF calculation. Three main schemes have been de-
veloped in this category. In the incremental scheme,76–79
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the correlation energy is expressed as a many-body ex-
pansion. The molecular orbitals are thus divided into sin-
gle fragments (one-body) and the accuracy is controlled
by the size of the fragments as well as the order of the ex-
pansion (usually using a two-body or three-body expan-
sion). In the Cluster-in-Molecule (CIM)80–91 approach,
occupied LMOs are used to partition the calculation of
the correlation energy into small and independent frag-
ment calculations that each uses a subset of the total
orbital space. We note that the original formulation of
the CIM method80 employed a partitioning approach in
terms of single and pair orbital clusters, while this ap-
proach has been abandoned in favor of having only sin-
gle clusters.81 Some of the pairs were later reintroduced
for improved accuracy.86 The original formulation of the
CIM method80 also employed localized virtual orbitals,
which was later abandoned in favour of a set of local vir-
tual orbitals constructed for each fragment from PAOs.81

Finally, the DEC scheme also belongs to this category
and is closely related to the CIM approach. DEC differs
from CIM, since the correlation energy is partitioned into
atomic fragments and pair fragments, rather than single
orbital clusters, and the DEC fragments are determined
dynamically in order to ensure error control in the final
correlation energy. The DEC scheme is reviewed in detail
below.

Local orbital basis

A large variety of local occupied and local virtual or-
bitals have been used in the different local correlation
methods. The wave function-based CC approximations
and the fragmentation-based correlation approaches use
local occupied orbitals that most often have been deter-
mined using Boys92 or Pipek-Mezey93 localization func-
tions. Recently, advanced orbital localization functions,
such as the square of the fourth central moment local-
ization function,94 have been introduced where the lo-
calized orbitals are less system dependent than the Boys
or Pipek-Mezey localized orbitals. The more advanced
localization functions combined with a robust optimiza-
tion strategy95 makes it possible to determine localized
virtual orbitals, even for systems that are traditionally
considered to have delocalized electronic structure.96,97

The localized virtual orbitals constitute an orthogonal
and non-redundant set, and are very convenient for a
straightforward application of standard CC implementa-
tions in local correlation methods.

PAOs have played a central role in the development
of local correlation methods. However, they constitute
a nonorthogonal and redundant set of virtual orbitals
which often complicates the algorithmic expressions. In
wave function-based approximations, PAOs can be used
as a basis for expanding PNOs46 or OSVs,98 which fur-
ther complicates the CC algorithms but lead to a very
compact representation of the CC amplitudes.98 On the
other hand, it has also been shown that localized virtual

orbitals obtained using advanced localization functions
are more spatially local than PAOs.96,97 Clearly, the op-
timal choice of orbitals in local correlation methods is
still a very active research field.

THE DIVIDE-EXPAND-CONSOLIDATE SCHEME

The DEC scheme is designed to be a linear-scaling,
highly accurate, and massively parallel CC method appli-
cable to very large molecular systems. It is implemented
in the LSDalton program,99 which is a part of the Dalton
suite.100

The three most important features of the DEC scheme
compared to other local correlation methods are the fol-
lowing:

• The sizes of the fragments are determined dynami-
cally in a black-box manner to ensure error control.

• The DEC scheme is combined with a massively
parallel implementation, with three levels of par-
allelism.

• The virtual space is described using localized vir-
tual orbitals.94,95,97,101,102

The theoretical foundation for the DEC scheme and its
implementation will be detailed in the following sections.

The Divide-Expand-Consolidate energy expression

In CC theory the total energy of a molecular system
may be written as a sum of a HF and a correlation con-
tribution

ECC = EHF + Ecorr , (3)

where the CC correlation energy for a closed-shell system
is defined as

Ecorr =
∑

ij

∑

ab

(tabij + tai t
b
j)(2gaibj − gbiaj) , (4)

Here, gaibj are the electron repulsion integrals (ERIs) us-
ing the Mulliken notation, tai and tabij denote singles and
doubles CC amplitudes, and indices i, j, . . . refer to oc-
cupied HF orbitals, while a, b, . . . refer to virtual HF or-
bitals.

In a DEC calculation we initially determine a set
of localized occupied and virtual HF molecular orbitals
(MOs) and assign these to the atomic site nearest to the
MO’s center of charge. The CC correlation energy Ecorr

may then be expressed as

Ecorr =

Nfrag∑

P


EP +

Nfrag∑

Q<P

∆EPQ


 (5)
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where Nfrag is the number of the atomic fragments and
the atomic fragment energy EP and the pair fragment
interaction energy ∆EPQ are defined according to,

EP =
∑

ij∈P

∑

ab

(tabij + tai t
b
j)(2gaibj − gbiaj) , (6)

∆EPQ =
∑

i∈P
j∈Q

∑

ab

(tabij + tai t
b
j)(2gaibj − gbiaj)

+
∑

i∈Q
j∈P

∑

ab

(tabij + tai t
b
j)(2gaibj − gbiaj), (7)

where the MOs are now assumed to be local and P de-
notes the set of local occupied orbitals assigned to atomic
site P .

The correlation energy in Eq. (5), (6), and (7) does
not contain any approximations and using these equa-
tions yield the exact correlation energy. In DEC we have
thus divided the calculation of the correlation energy into
Nfrag+1/2·Nfrag(Nfrag − 1) independent fragment calcu-
lations. The computational savings arise when screening
techniques are used on each fragment calculation. The
screening used to reduce the computational effort arises
from the locality of the MOs. The integral gaibj vanishes
when the molecular orbital φa is spatially far from φi and
the summation over the virtual orbitals in Eq. (6) and
Eq. (7) may therefore be restricted. The set of virtual
orbitals that are important for atomic site P is denoted
[P ].

The summation restrictions in the fragment energy cal-
culations are determined in a black-box manner (see next
subsection) and allow us to write atomic fragment and
pair fragment interaction energies as

EP =
∑

ij∈P

∑

ab∈[P ]

(tabij + tai t
b
j)(2gaibj − gbiaj) , (8)

∆EPQ =
∑

i∈P
j∈Q

∑

ab∈[P ]∪[Q]

(tabij + tai t
b
j)(2gaibj − gbiaj)

+
∑

i∈Q
j∈P

∑

ab∈[P ]∪[Q]

(tabij + tai t
b
j)(2gaibj − gbiaj),

(9)

The set of virtual orbitals used for the pair fragment
interaction energies are chosen as the union of consti-
tuting atomic fragment spaces, justified through a lo-
cality analysis.11,12 Note that the definition of ∆EPQ

have changed since the original expression10 had an in-
herent error similar to the basis set superposition error
(BSSE).11

The CCSD(T) model is often described as the gold
standard of quantum chemistry and it is therefore of ut-
most importance to enable CCSD(T) calculation with
the DEC scheme. However, the conventional formulation

of the (T) correction to the CCSD correlation energy103

cannot easily be partitioned into atomic fragment and
pair fragment energy contributions. In Ref. 23 it was
shown how the (T) correction could be expressed in an
alternative form which only requires an additional o3v4

scaling step compared to a conventional CCSD(T) im-
plementation but can be partitioned in analogy with the
standard CC correlation energy (see Ref. 23 for further
details),

E(T ) =

Nfrag∑

P


E(T )

P +

Nfrag∑

Q<P

∆E
(T )
PQ


 (10)

with

E
(T )
P =2

∑

ij∈P

∑

ab∈[P ]

(2tabij − tabji )T ab
ij + 2

∑

i∈P

∑

a∈P
tai T

a
i

(11)

∆E
(T )
PQ =2

(∑

i∈P
j∈Q

+
∑

i∈Q
j∈P

) ∑

ab∈[P ]∪[Q]

(2tabij − tabji )T ab
ij

+ 2
(∑

a∈P
i∈Q

+
∑

a∈Q
i∈P

)
tai T

a
i . (12)

The T ab
ij and T a

j intermediates are defined as:104

T ab
ij =

∑

cd∈[P ]

∑

k∈[P ]

(
tacdijkLbckd − tacdkji gkdbc

)

−
∑

c∈[P ]

∑

kl∈[P ]

(
tabcikl Lkjlc − tabclki gkjlc

)
(13a)

T a
i =

∑

cd∈[P ]

∑

kl∈[P ]

(
tacdikl − tacdlki

)
Lkcld . (13b)

where, by analogy with the virtual spaces, [P ] denotes
the set of occupied orbitals assigned to atomic sites in
the vicinity of center P . The triples amplitudes tabcijk are

obtained from the CCSD doubles amplitudes (see Ref. 23
for further details) and Laibj = 2gaibj − gbiaj .

The energy partitioning presented in Eq. (8) and (9)
is based on the assignment of local occupied orbitals
to atomic sites and is denoted the occupied partition-
ing scheme. However, since in DEC we use both local
occupied and local virtual orbitals we may also formu-
late a virtual and a Lagrangian partitioning scheme.13

The three partitioning schemes yield independent ways
of evaluating the correlation energy and may therefore be
used to estimate the error associated with a DEC calcula-
tion. Virtual orbitals are usually less local than occupied
orbitals97 and larger fragments occur in the virtual and
Lagrangian partitioning scheme than in the occupied par-
titioning scheme which is therefore generally preferred.
However, the virtual partitioning scheme is necessary in
DEC calculations of molecular gradients.14,18
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The atomic fragment optimization

In the previous section we described how the correla-
tion energy may be partitioned into atomic fragment and
pair fragment interaction energies. In this section we de-
scribe how the occupied and virtual orbital spaces [P ]
and [P ] can be optimized for atomic fragment P to give
a fragment energy EP with an error determined by the
fragment optimization threshold (FOT).

The atomic fragment energy EP in Eq. (8) may be de-
termined from the energy orbital space (EOS), PEOS ≡
P ∪ [P ]. However, due to the coupling between the CC
amplitudes it is not possible to simply solve the CC am-
plitude equation in PEOS. The coupling can be taken
into account by solving the CC amplitude equations in an
extended orbital space, which includes additional occu-
pied buffer orbitals denoted the amplitude orbital space
(AOS), PAOS ≡ [P ]∪[P ]. Note that the occupied orbitals
in the EOS (i ∈ P ) are fixed by the orbital assignment
and that the virtual orbital space is the same for the
EOS and the AOS. Assuming [P ] and [P ] to be known,
the calculation of the atomic fragment energy EP can be
performed as follows:

1. Solve the CC amplitude equations in PAOS.

2. Extract the CC amplitudes from PAOS to PEOS.

3. Calculate the two-electron integrals in PEOS.

4. Use the CC amplitudes and integrals in PEOS to
calculate the atomic fragment energy as in Eq. (8).

The strategy used in DEC to determine the spaces
[P ] and [P ] that give atomic fragment energies to the
FOT accuracy can be divided into two steps, a fragment
expansion step followed by a fragment reduction step.
In the fragment expansion we generate a priority list lPr
that describe the importance of each local orbital for the
fragment energy EP . Due to the locality of correlation
effects, the distance between the center of charge of a
given orbital and the atomic site P has been used to gen-
erate the list lPr , but other lists, for example, based on
the numerical overlap of the orbitals or the Fock matrix
elements have also been tested and led to similar results.

The fragment expansion starts by selecting an initial
space ([P ] and [P ]) from the priority list and calculat-
ing the fragment energy according to the recipe outlined
above. The orbital spaces may then be expanded based
on the priority list and an improved fragment energy is
calculated. This process is repeated until the difference
between the last two fragment energies is below the FOT.
The fragment expansion procedure is illustrated in the
left part of Figure 1. Note that at each expansion step
we have to make sure that a sufficient number of orbitals
is added to avoid false convergence.

Pair fragment interaction energies ∆EPQ, are cal-
culated in the union of the atomic fragment spaces
PQAOS ≡ PAOS∪QAOS. However, it is clear that the pair
fragment orbital spaces may become much larger than

the atomic fragment spaces, and that many more pair
fragments than atomic fragments have to be calculated.
As a consequence, any reduction in the size of the AOS
for the atomic fragments will lead to important compu-
tational savings for the pair fragments. For that reason,
we have introduced a fragment reduction procedure for
the expanded AOS where a binary search is carried out
to remove orbitals without introducing errors larger than
the FOT in the atomic fragment energy. The determi-
nation of the fragment orbital spaces is summarized in
Figure 1 and is considered in greater details in Ref. 12.
The error control of the atomic fragment optimization
comes with an overhead, and an improved fragment op-
timization procedure is an ongoing research direction in
optimizing the DEC scheme.

Finally, we note that for DEC-CCSD or DEC-
CCSD(T) calculations, the fragment optimization proce-
dure may be performed at a lower lever of theory. In Ref.
23 the fragment optimization procedure was performed
at the DEC-MP2 level of theory, instead of the targeted
DEC-CCSD and DEC-CCSD(T) models.

The locality of electron correlation is system depen-
dent and the aim of the fragment optimization procedure
is to obtain a method that provides the same recovery of
the correlation energy for all systems, independently of
the complexity of the electronic structure. The fragment
spaces tend to be bigger for systems characterized by a
delocalized electronic-structure such as graphene than for
systems containing only non-conjugated covalent bonds.
In particular for systems with a delocalized electronic-
structure it is important to use the most advanced or-
bital localization functions, such as the squared fourth
moment localization function,94 since these localization
functions are capable of giving localized sets of orbitals
that are very little system dependent.97

The pseudo-canonical basis and the DEC amplitude
equations

In the fragment energy calculations of the DEC scheme
the CC amplitude equations must be solved in the AOS.
This is done by transforming the set of local orbitals into
a pseudo-canonical basis, which is defined by diagonaliz-
ing the local Fock matrix blocks Fij (ij ∈ [P ]) and Fab

(ab ∈ [P ]). The pseudo-canonical basis is traditionally
denoted using capital letters I, J .

The CC amplitude equations are better conditioned in
the pseudo-canonical basis and the MP2 amplitudes16

and (T) intermediates23 can be obtained in a non-
iterative fashion using standard canonical CC algorithms.
Once the amplitude equations have been solved in the
AOS, the amplitudes must be transformed back to the
local basis (tAB

IJ → tabij ) in order to extract the EOS am-
plitudes and calculate the fragment energy. A similar
operation is performed for the (T) intermediates (T ab

ij

and T a
i in Eq. (13)).
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FIG. 1. Illustration of the fragment optimization procedure, EP is the atomic fragment energy associated to atomic site P ,
PAOS denotes the space in which the CC amplitude equations are solved and FOT is a user-defined threshold.
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FIG. 2. Decay of the MP2 pair fragment interaction ener-
gies |∆EPQ| with the pair distance RPQ for a reduced titin
protein105 (392 atoms) using a cc-pVDZ basis set (3772 basis
functions). The expected R−6

PQ pair decay is also plotted. The
pair fragment interaction energies are separated into the cal-
culated “final” pairs (in green) and the pairs screened away
by the pair screening procedure (in blue).

The Pair Fragment calculations

The DEC scheme is only linear-scaling provided that
the number of pair fragments scales linearly with the sys-
tem size. Due to the decay of dispersion interactions, the
pair fragment interaction energy ∆EPQ decay as R−6PQ
with the distance RPQ between atomic sites P and Q. A
real-space cut-off Rscreen may therefore be used to screen
away pairs with a distance greater than the distance
screening threshold, e.g. RPQ > Rscreen, leading to a
linear-scaling algorithm. This procedure was used in Ref.
10,13–16,106–108. Two issues arise with such a strategy:
(i) the number of pair fragment interaction energies cal-
culated becomes independent of the FOT and in order to
converge to the standard CC correlation energy both the
FOT and Rscreen would have to be adjusted, (ii) the pair
fragment interaction energies for a given pair distance

can spread over several orders of magnitude (see Figure
2), hence, a significant number of the pairs included with
a distance screening threshold are less important than
some of the pairs screened away. Those issues can be ad-
dressed by considering a pair screening strategy based on
an estimation of the pair fragment interaction energies.
To introduce such a strategy we rewrite the correlation
energy in Eq. (5) in terms of a sum of effective atomic
fragment energies εP

Ecorr =

Nfrag∑

P

εP . (14)

where the effective atomic fragment energy for atomic
fragment P is a sum of the atomic fragment energy EP

and an average pair fragment interaction energy Eav
P that

describes the interaction between the atomic site P and
the other atomic sites

εP = EP + Eav
P . (15)

where

Eav
P =

1

2

∑

Q6=P

∆EPQ. (16)

In a previous section we described how an atomic frag-
ment energy EP may be determined to the FOT accu-
racy. In the rest of this section we describe how a pair
fragment screening may be applied to ensure that the av-
erage pair fragment interaction energy is also determined
to the FOT accuracy.

To obtain such a pair fragment screening we calculate
pair energy estimates at the MP2 level, using minimal
orbital spaces, chosen based on the priority list lPr , such
that we obtain pair energy estimates ∆Eesti

PQ which re-

cover 80-95% of the ”exact” MP2 pair fragment interac-
tion energies while being very cheap in terms of compu-
tational resources. A very conservative real-space cut-off
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Rscreen = 30Å ensures a linear-scaling number of pair
energy estimates.

Once the pair energy estimates have been calculated,
the screening strategy proceeds as follows,

1. Order all pair energy estimates associated with a
given site P ,

|∆Eesti
P1 | ≤ |∆Eesti

P2 | · · · ≤ |∆Eesti
PNfrag

|, (17)

where Nfrag is the total number of atomic sites in
the molecule.

2. Sum up the estimated contributions in the list
starting with the smallest values until it adds up
to the FOT,

max
IP

(1

2

IP∑

Q=1

|∆Eesti
PQ|

)
≤ FOT (18)

3. All pairs ∆Eesti
PQ in the ordered list for which Q ≤

IP are then screened away and not calculated, at
the target CC level.

4. Repeat Step 1-3 for all atomic sites.

In Figure 2, we have plotted the decay of MP2 pair frag-
ment interaction energies with the pair distance RPQ for
a reduced titin protein (FOT= 10−4 a.u.), see Ref. 105
for molecular structure. The plot shows which pairs are
kept and which are screened away by the procedure out-
lined above. In the reduced titin example only about
15% of the pair fragment interaction energies have to be
calculated.

The procedure presented in this section has been
applied to supramolecular wires comprising up to 40
monomers of 1-aza-adamantane-trione (AAT) molecules
(2440 atoms and 24440 basis functions)20 in order
to demonstrate the linear-scaling feature of the DEC
scheme. This is shown in Figure 3.

Error Estimates

The atomic fragment optimization and the pair screen-
ing procedures described in the previous sections have
been designed to ensure an error of the order of the FOT
in both the atomic fragment energy EP and the average
pair fragment interaction energy Eav

P . In total the error
of a DEC calculation thus contains a correlation error

δEcorr ≈ 2NfragFOT (19)

The absolute error in the DEC correlation energy there-
fore increase linearly with the number of sites in the
system, while the error in the individual atomic frag-
ment energies is size-intensive. The electronic structure

2 

FIG. 3. Computational scaling with system size for AAT
molecular wires of increasing lengths using 14952 Titan
nodes.20 The blue line displays the ideal linear-scaling be-
havior. A molecular wire containing 10 AAT monomers and
one of the localized molecular orbitals are also shown.

is therefore described with a uniform accuracy for the to-
tal molecular system and size-intensive molecular prop-
erties, such as molecular gradients, may therefore be de-
termined to the FOT precision. The recovery of the full
correlation energy

∆DEC =
EDEC

Ecorr
, (20)

is also size-intensive, and for the array of calculations pre-
sented so far,15,17,19,20,22 Table I gives typical recoveries
for several FOTs. In summary, the FOT determines the
accuracy of both the individual atomic fragment energies
and the total correlation energy. This is an important
feature of the DEC scheme.

TABLE I. Typical recoveries for several FOTs.

FOT ∆DEC(%)

10−3 98.2
10−4 99.8
10−5 99.985
10−6 99.998

The Divide-Expand-Consolidate parallelization

The DEC algorithm presented so far, scales linearly
with the system size for large enough systems, i.e. when
the orbital spaces are saturated for a given FOT and
when the number of pair fragments that survive the
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screening procedure grows linearly. However, the linear-
scaling feature of DEC comes with a large prefactor and
the crossover with conventional algorithm occurs for large
systems. Nonetheless, the DEC scheme can be extended
to a wider range of molecules by realizing that the atomic
and pair fragment calculations are independent of each
other and can therefore be performed in parallel. This
significantly reduces the time-to-solution compared to a
conventional calculation. This feature is common to all
fragmentation approaches and makes the DEC algorithm
well suited for supercomputers and future architectures
with a large number of cores.

The DEC algorithm has been designed with three
levels of parallelization:16,20 Coarse, medium, and fine-
grained. The coarse-grained parallelization takes advan-
tage of the independence of the fragment energy calcu-
lations, which can therefore be performed in parallel on
different computing units. The medium and fine-grained
level of parallelizations are not specific to DEC and are
designed to parallelize the solution of the CC amplitude
equations for each fragment. The fragment CC ampli-
tude equations are standard CC amplitude equations and
standard methods can be used for the parallelization of
each model. In the following, we therefore focus on dis-
cussing the coarse-grained level of parallelization.

At the coarse-grained level, the available computing
units are divided into a global master, driving the DEC
calculation through a set of local masters that each is
in command of a set of local slaves to execute the indi-
vidual fragment calculations. The global master starts
by constructing a job list where each job (an atomic or
pair fragment interaction energy calculation) is ordered
based on an estimation of the workload (the size of the
fragment orbital space). The global master then commu-
nicates to each local master the information necessary
to calculate a given fragment energy, starting with the
largest fragments. Once every local master has been as-
signed a fragment calculation, the global master waits for
the results from the local masters, and distributes the re-
maining fragment calculations on the joblist as the local
masters become available. When all the jobs have been
distributed, the global master waits for all the local mas-
ters to finish. Finally the global master calculates the
correlation energy based on Eq. (5). The parallelization
of the DEC scheme is illustrated in Figure 4.

Regarding the medium-grained parallelization, the
number of local slaves allocated to each local master is
determined on-the-fly, based on the workload of the cur-
rent job. Due to the steep scaling with fragment sizes
there is a huge difference in the computational cost of
the smallest and largest fragments. The medium-grained
parallelism ensures that more computational resources
are used for the more expensive jobs and thereby offsets
this difference to some extent. In practice each local mas-
ter starts with a large number of local slaves and during
the calculation each local master will be requested to per-
form smaller and smaller calculations (due to the ordered
job list). Once the number of slaves is too large com-

FIG. 4. Schematic representation of the coarse and medium-
grained parallelization of the DEC scheme for a 12 fragment
calculation on 9 nodes. Node 0 corresponds to the global
master while each light green block correspond to a frag-
ment calculation. The red and grey lines denote local mas-
ter and slaves, respectively. Finally, the dashes inside the
fragments correspond to idle time during the medium-grained
parallelization, while the wiggles denote idle time during the
coarse-grained parallelization.

pared to the workload the local master appoints a new
local master from its set of slaves and divides the slaves
among the two local masters. This dynamic scheduling
is important in order to minimize the idling time of all
the computing units (see Figure 4). Such a parallelism
strategy allows the DEC algorithm to efficiently utilize
several thousands computer nodes as demonstrated in
Ref. 16 and 20. The strong scaling behavior with up to
18400 nodes has been demonstrated for 10 monomers of
AATs,20 see Figure 5.

In the atomic fragment optimization, the workload
associated with a given fragment varies and cannot be
known in advance. In that part of the calculation, we
therefore assign a fixed number of nodes to all fragments.
This can lead to significant idle time which is reduced
by distributing the calculation of the many pair energy
estimates to the nodes that are already done with the
fragment optimization.

Using CC methodologies that require large amounts
of I/O could result in a situation where all nodes read
or write to the file system simultaneously and this pose
a problem for parallel distributed file systems. Further-
more, the future of file systems are unknown, and op-
timal I/O behavior often hinders portability. Thus, in
the DEC scheme integral direct algorithms and parallel
distributed-memory storage have been exploited to avoid
I/O altogether.
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FIG. 5. Strong scaling plot for coarse-grained parallelization: AAT10 using 3738 to 18400 nodes with strong scaling efficiency
numbers along the curve. The blue line displays ideal strong scaling behavior.

Overview of DEC developments

The DEC scheme was first introduced in Ref. 10 to-
gether with proof-of-concept calculations at the MP2 and
CCSD levels. A locality analysis of the MP2 and CCSD
amplitude equations was then presented11 and refined12

along with a practical implementation of the DEC al-
gorithm. The virtual and Lagrangian DEC partition-
ing schemes were introduced in Ref. 13 to provide an
internal consistency check of the calculated correlation
energy. These partitioning schemes were also central
for developing the DEC-MP2 molecular gradient.14 As
a first real application, we performed DEC-MP2 calcu-
lations on a single insulin monomer (787 atoms, 7604
basis functions) and reported the correlation energy and
the electrostatic potential of the molecule in a cc-pVDZ
basis.15 The DEC-MP2 results were then used to bench-
mark DFT functionals for large molecular systems107,108

as described in Figure 6. The three-level parallelism
strategy of DEC was detailed in Ref. 16 with calcu-
lations on two molecular systems containing 528 and
1056 atoms (4278 and 8556 basis functions) and using
47,120 and 94,240 cores. To reduce the computational
requirements of the DEC-MP2 model we applied the
resolution-of-the-identity (RI) approximation to the two-
electron integrals,17,18 ported parts of the code to gen-
eral purpose graphics processing units (GPGPUs),19 and
applied the resulting code to supramolecular wires con-
taining up to 40 monomers of AATs (2440 atoms and
24440 basis functions).20 The DEC-RI-MP2 method has
also been extended with explicitly correlated (F12) tech-
niques to provide faster convergence to the complete ba-
sis set limit,21 and it has been augmented with a Laplace
transformation22 (DEC-LT-RIMP2), which offers signif-

icant speedup. Finally, the DEC-CCSD(T) model was
recently introduced along with proof-of-concept calcula-
tions on medium-sized molecules.23

DISCUSSION AND OUTLOOK

We have presented the DEC scheme as summarized
in Figure 7, which is a linear-scaling and massively par-
allel framework for CC calculations that ensures error
control in a black-box manner. These features enables
DEC-CC calculations that are outside the scope of stan-
dard CC algorithms.15,16,19,20 Although DEC is a linear-
scaling method, its prefactor is very high since the orbital
spaces for the different fragments overlap, leading to re-
calculations of integrals and amplitudes. For calculations
on a single compute node, the cross-over point in terms
of computational effort between DEC and a conventional
(canonical) calculation therefore occurs for rather large
molecular systems, and if a canonical calculation is fea-
sible it is likely faster than the DEC calculation.17 How-
ever, if many compute nodes are available, the massively
parallel attributes of the DEC algorithm will lead to a
shorter time-to-solution than a canonical calculation. In
the future the floating point operations will likely con-
tinue to become cheaper and the number of cores on a
compute node will continue to increase. In such an en-
vironment, parallelization is crucial and a large amount
of recalculation is acceptable if it allows for a massively
parallel computational strategy.

The large-scale DEC calculations performed so far have
been carried out using the MP2 model,15,16,19,20 and at
this stage the redundancy in a DEC-LT-RIMP222 calcu-
lation is so limited that it is poised to become a main-
stream method, applicable on all computational architec-
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FIG. 6. Benchmarking DFT functionals against DEC-MP2
electrostatic potential. Top: difference between the MP2
and B3LYP electrostatic potential. Bottom: difference be-
tween the MP2 and CAMB3LYP electrostatic potential. It
was demonstrated107 that B3LYP incorrectly predict partial
electron transfer from anionic to cationic sites due to a com-
bination of self-interaction errors and an incorrect distance
dependencies of the B3LYP functional. On the other hand,
the range-separated CAMB3LYP functional performs much
better because of the elimination of self-interaction errors at
long distances.

tures. The DEC-LT-RIMP2 method is effectively limited
by the preliminary HF calculation and orbital localiza-
tion.

In principle, the DEC scheme provides the framework
for a linear-scaling and massively parallel implementa-
tions of any CC model, but some technical challenges
remain to be solved before DEC becomes a mainstream
tool for the more accurate CC models. For example,
while the error control of the DEC-CCSD(T) method
has been demonstrated,23 the current DEC-CCSD(T) al-
gorithm can only be applied to large molecules for loose
FOT values, due to the sizes of the fragments encoun-
tered. For large compact molecules and using basis sets
of triple-ζ quality, the fragments often contain more than
1000 basis functions.19 Such dimensions are out of reach
even for massively parallel CCSD(T) implementations
and thus prevent high-accuracy DEC-CCSD(T) applica-
tions. However, the large pair fragments are often asso-
ciated with a minor energy contributions and it may be

Local HF orbitals

Q R

Atomic fragment optimization

PQ

Pair fragments

PR QR RS

P

Pair estimates

PQ PR

Collect fragment energies

Ecorr=∑
P

EP+∑
P>Q

ΔEPQ

FIG. 7. Overview of a typical DEC calculation. The HF or-
bitals are localized and assigned to atomic sites. The atomic
fragment optimization is then performed as described in Fig-
ure 1 along with the calculation of pair energy estimates used
for the pair screening procedure. The pairs that have not
been screened away are then calculated (usually the time-
dominating part). Finally, the fragment energies are collected
and added to obtain the total correlation energy.

possible to reduce the pair orbital spaces further without
compromising the precision of the final correlation en-
ergy. Alternatively, it may also be possible to reduce the
scaling of the high-level CC fragment calculations by con-
sidering tensor factorization techniques, PNOs, or other
fragment specific orbitals. For example, the DEC scheme
could be combined with PNO-based local CC methods
to fully exploit the sparsity of correlation effects in each
fragment calculation. Such a combination would allow
for CC calculations on systems of unprecedented sizes
where all bottlenecks of wave function-based approxima-
tions are removed through the DEC scheme.

Finally we note that the implementation of the DEC
scheme ensures performance portability and the DEC
scheme will thus automatically benefit from new hard-
ware developments and automatically extend its appli-
cation range as computational resources become more
affordable.
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The theoretical foundation for solving coupled cluster singles and doubles (CCSD) amplitude
equations to a desired precision in terms of independent fragment calculations using restricted
local orbital spaces is reinvestigated with focus on the individual error sources. Four different
error sources are identified theoretically and numerically and it is demonstrated that, for practical
purposes, local orbital spaces for CCSD calculations can be identified from calculations at the MP2
level. The development establishes a solid theoretical foundation for local CCSD calculations for
the independent fragments, and thus for divide–expand–consolidate coupled cluster calculations for
large molecular systems with rigorous error control. Based on this theoretical foundation, we have
developed an algorithm for determining the orbital spaces needed for obtaining the single fragment
energies to a requested precision and numerically demonstrated the robustness and precision of this
algorithm. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4947019]

I. INTRODUCTION

Highly accurate calculations of molecular energies and
properties have been feasible for many years using coupled
cluster (CC) theory. While it is possible to achieve accuracies
challenging experiment,1 the CC hierarchy of methods in a
conventional formulation is restricted to small molecules due
to an inherent high-polynomial scaling. With the increasing
experimental possibilities and general interest in life and
material sciences to address more and more complex chemical
systems, the need for highly accurate electronic structure
calculations for large molecules is growing rapidly. Since the
steep scaling of the CC methods is a direct consequence of
the nonlocal nature of the routinely used canonical Hartree-
Fock (HF) orbitals, it was realized early that local orbitals
would allow for an accurate linear-scaling description of the
electronic correlation effects in large molecules and several
local CC methods have been developed since.

Local correlation methods were pioneered by Pulay and
Saebo,2,3 and an early prominent contribution is the local
coupled cluster (LCC) method of Werner and coworkers.4,5

Many other local CC methods have been proposed, e.g.,
the atomic orbital (AO)-based CC,6,7 the natural linear
scaling approach,8 the cluster–in–a–molecule approach,9–11

the divide-and-conquer approach,12,13 the fragment molecular
orbital (MO) approach,14,15 and the incremental scheme.16,17

Linear scaling has also been achieved in second order
Møller-Plesset perturbation theory (MP2) calculations using
a Laplace-transformation of the energy denominator18 with
an effective integral screening.19,20 In recent years the highly
successful pair natural orbitals21–23 and orbital specific virtual
orbitals24 have been used in order to achieve linear scaling

a)Electronic mail: pettenhuber@gmail.com

for CC methods. In local CC methods, ad hoc approximations
have often been introduced, for example, by assigning fixed
virtual correlating orbital spaces to local occupied orbitals, or
by a physical fragmentation of the molecule. The precision of a
local correlated calculation compared to a standard calculation
is in general made unclear by these approximations.

In the standard CC methods, the precision of a calculation
is determined by the residual norm threshold for the cluster
amplitude equations. The precision is thus defined prior to a
calculation. This a priori knowledge of the precision is an
important feature and one of the reasons for the success
of CC calculations on small molecular systems. In the
recently introduced divide–expand–consolidate (DEC) local
CC method,25–32 the precision is similarly defined prior to
a calculation. In the DEC method, a calculation on a full
molecular system is divided into a sequence of single fragment
and pair fragment calculations referencing small parts of the
orbital space of the full molecular system and the precision
is defined by the fragment optimization threshold (FOT) that
is imposed on the single fragment energy calculations. The
FOT is used to identify the orbital spaces where the cluster
amplitude equations have to be solved to give the single
fragment energies to the FOT precision. Using unions of single
fragment orbital spaces in the pair fragment calculations, the
precision of the total energy is ultimately determined by the
FOT value as demonstrated numerically in Refs. 25–27, 31,
and 32. In this paper, we describe how these orbital spaces for
the single fragment calculations may be determined for the
MP2 and CC with singles and doubles excitations (CCSD)
models. The screening of pair fragments that is necessary
to obtain a linear-scaling algorithm for determining the total
correlation energy with rigorous error control will be described
in a forthcoming publication.

A DEC calculation may be described both in terms of
an occupied and a virtual partitioning of the CC correlation

0021-9606/2016/144(16)/164116/16/$30.00 144, 164116-1 Published by AIP Publishing.
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energy,27 which provide two alternative ways of partitioning
the correlation energy for the full molecular system into
fragment calculations using subsets of the complete molecular
orbital space. These two partitioning schemes therefore
provide an internal consistency check of the precision29 and
both schemes have been required for calculating molecular
gradients.28 We have previously carried out a locality analysis
for the occupied partitioning scheme, which demonstrates
how orbital spaces may be selected for evaluating the single
fragment energies.26 In this paper, we improve and generalize
this locality analysis to include the virtual partitioning
scheme. We analyze the general coupling mechanisms in
the MP2 and CCSD amplitude equations theoretically as
well as numerically, and we investigate the resulting errors
when the amplitude equations are solved in a restricted
local orbital space. For MP2, the only coupling mechanism
is caused by short-ranged Fock matrix terms in the MP2
amplitude equations, while for the CCSD model, orbital space
extensions may also occur via a mechanism involving long-
range interactions originating from two-electron integrals in
the CCSD amplitude equations. We demonstrate that both the
MP2 and CCSD equations may be solved in local restricted
orbital spaces with rigorous error control in the single fragment
energy.

In Section II we summarize the DEC algorithm. In
Section III we analyze the locality of the MP2 and CCSD
amplitude equations and identify the coupling mechanisms in
the amplitude equations. In Section IV we use this information
to develop a practical black-box algorithm that may be used to
determine the single fragment energies to the FOT precision.
In Section V we analyze the efficiency of the single fragment
optimization algorithm numerically and in Section VI we give
some concluding remarks.

II. THE DEC ALGORITHM SUMMARIZED

In this section we briefly summarize the DEC-CC method
with emphasis on giving the background that is required for
determining the local orbital spaces needed to solve cluster
amplitude equations and obtain the single fragment energies
to the predefined FOT tolerance.

The CC correlation energy for a closed-shell molecular
system may be expressed as

Ecorr =


ia jb

(tabi j + tai tbj )(2gia jb − gib ja)

=


ia jb

τabi j Lia jb, (1)

where tai and tabi j are the singles and doubles cluster
amplitudes, respectively, gia jb are two-electron integrals in the
Mulliken notation, and we have introduced τabi j = tabi j + tai tbj
and Lia jb = 2gia jb − gib ja. Indices i, j (a,b) refer to occupied
(unoccupied) HF molecular orbitals (MOs) {φ} and indices
p,q,r, s, t denote MO indices of unspecified occupation. For
simplicity we assume real MOs throughout the paper.

For a set of local HF orbitals, each orbital may be assigned
to a site (e.g., an orbital, a collection of neighboring orbitals,
an atom, or a collection thereof) P,Q, . . .. Each site P thus gets

assigned a set of occupied P and unoccupied P orbital indices.
For local orbitals a charge distributionωpq = φpφq is nonzero
only if the MOs φp and φq are close in space. An integral gia jb
is thus non-negligible only if the charge distributions ωia and
ω jb are non-negligible, i.e., orbitals φi and φa are assigned to
sites that are close to each other and similarly for orbitals φ j
and φb. If φi and φ j (φa and φb) are both assigned to site P, we
will write i, j ∈ P (a,b ∈ P), and gia jb is non-negligible and
contributes to the energy only if a,b ∈ [P] (i, j ∈ [P]), where
the bracket denotes the set of orbitals spatially close to site
P, including P itself. For compactness we will collectively
refer to the local occupied [P] and virtual [P] orbital spaces
as [P].

Replacing the summations in Eq. (1) by summations over
sites and pairs of sites and using that some of the two-electron
integrals may be neglected (to a given precision), we may
write the correlation energy as25,27

Ex
corr =



P

[Ex
P +


Q<P

Ex
PQ], (2)

where x refers to either the occupied (x = o) or the virtual
(x = v) partitioning scheme. The occupied single fragment
energy Eo

P for site P and occupied pair interaction energy
Eo
PQ between sites P and Q may be expressed as

Eo
P =


i, j ∈P



a,b∈[P]
τabi j Lia jb (3)

and

Eo
PQ =

(

i∈P
j∈Q

+


j∈P
i∈Q

) 

a,b∈[P]∪[Q]
τabi j Lia jb. (4)

The virtual single fragment energy Ev
P and pair interaction

energy Ev
PQ may similarly be calculated according to

Ev
P =



a,b∈P



i, j ∈[P]
τabi j Lia jb (5)

and

Ev
PQ =

(

a∈P
b∈Q

+


b∈P
a∈Q

) 

i, j ∈[P]∪[Q]
τabi j Lia jb. (6)

If all orbitals are included in [P] and [P] for all sites P then
Eqs. (1) and (2) are identical for both the occupied and the
virtual partitioning schemes.

The evaluation of the occupied single fragment energy Eo
P

requires the amplitudes of the occupied energy orbital space
(EOS) in Eq. (3). To indicate that a four-index quantity, Xab

i j ,
is restricted to the occupied EOS, we write

Xab
i j ∈ Po

EOS, (7)

where Po
EOS refers to a collection of four orbital indices with

i, j ∈ P and a,b ∈ [P]. We will use the following compact
notation for Po

EOS:

Po
EOS ≡ P × P × [P] × [P] = P2 × [P]2. (8)

Similarly, Ev
P requires the amplitudes of the virtual EOS from

Eq. (5), which can be written as

Pv
EOS ≡ [P]2 × P

2
. (9)
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FIG. 1. Schematic illustration where the upper and lower rows of squares
symbolize the sets of virtual and occupied orbitals assigned to a center,
respectively. The orbitals assigned to site P are shown as red squares. The
space outside P where the integrals Lia jb entering the fragment energy E x

P
are non-negligible is shown in magenta for the occupied (a) and virtual (b)
partitioning schemes. (a) Schematic drawing of Po

EOS. (b) Schematic drawing
of Pv

EOS.

Po
EOS and P v

EOS are depicted schematically in Fig. 1. We
henceforth use the generic Px

EOS, Ex
P, and Ex

PQ to refer
to one of the partitioning schemes. In order to obtain the
single fragment and pair interaction energies to the predefined
precision, the amplitudes of Px

EOS have to be known, and the
accurate determination of these is the focus of the following
discussion.

When evaluating fragment energies Ex
P in local orbital

spaces, two primary error types arise. To illustrate these two
error types, we consider the evaluation of a fragment energy
Eo
P of the occupied partitioning scheme. The two error types

may be summarized as follows:

1. the summation restriction ab ∈ [P] in Eq. (3) in the
evaluation of Eo

P;
2. the amplitudes used for evaluating Eo

P are obtained by
solving the amplitude equations in a restricted orbital
space.

Note that in the limit where the amplitudes are obtained from
a calculation that includes the total orbital space, only error
type 1 is present. To schematically illustrate how the two error
types affect the size of the orbital space, we have plotted the
errors in Eo

P in Fig. 2 for a typical system. The errors in

FIG. 2. Schematic illustration of the different error types that are present
when fragment energies Eo

P are evaluated. Each point represents the fragment
energy error when orbitals within a certain distance cutoff from site P are
included. Magenta, solid line: error type 1; green, dashed line: error types 1
and 2; black arrow: error type 2. See text for details.

Eo
P are then given for two cases where the orbital space is

truncated at a given distance from site P. For the solid magenta
line, amplitudes have been obtained from a calculation that
includes the total molecular orbital space and the summation
(Eq. (3)) has been truncated. The magenta line therefore only
displays the decay of errors of type 1. For the green dashed
line, amplitudes are used where the amplitude equations have
been solved in an orbital space that has been truncated at the
same distance from P as used for the EOS. Thus, the dashed
line contains errors of both types 1 and 2. The difference
between the dashed and solid lines therefore represents errors
of type 2. In order to evaluate Eo

P to the requested FOT
precision in a practical calculation, it is therefore necessary to
include the coupling space, denoted by the arrow, in addition
to the EOS. The mechanisms which define the coupling space
in MP2 and CCSD calculations are identified in Section III.

III. THEORETICAL ANALYSIS: ORBITAL SPACES
IN DEC-CC FRAGMENT ENERGY CALCULATIONS

In this section we carry out a theoretical locality analysis
to identify the mechanisms that are responsible for introducing
the coupling between the amplitudes of the EOS and the
amplitudes of the neighboring orbital spaces. After these
mechanisms have been established, we discuss how the
coupling may be included in a fragment energy calculation to
obtain EOS amplitudes giving the single fragment energy to a
predefined precision. In Sections III A and III B we describe
the MP2 and CCSD models, respectively, while Section III C
contains numerical support for the theoretical analysis. Note
that the following discussion is a theoretical analysis, while
the practical implementation is described in Section IV.

A. Space extensions in MP2 fragment calculations

The MP2 amplitude equations constitute a set of linear
equations with a positive definite coefficient matrix


c

tcbi j Fac +


c

taci j Fbc −


k

tabk j Fki −


k

tabik Fk j = −gaib j .

(10)

If a canonical HF basis is used, the Fock matrix is diagonal
and Eq. (10) is solved in one iteration. If a basis of local
orbitals is used, the Fock matrix is diagonally dominant33 and
Eq. (10) may be solved in a few iterations using standard
iterative algorithms, such as the conjugate gradient or the
conjugate residual methods.34,35 In this section, we will use
the conjugate residual method as an analysis tool for solving
the MP2 amplitude equations in a restricted orbital space. For
the locality analysis we assume that Eq. (10) is expressed in
terms of a set of local HF orbitals and that the Fock matrix
and the two-electron integrals are local. These assumptions are
backed up numerically in Appendix A for a set of molecules.

1. Iterative solution of the MP2 amplitude equations

When solving Eq. (10) using the conjugate residual
algorithm, the amplitudes of iteration (n + 1) are determined
from the amplitudes of iteration n,
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tabi j,n+1 = tabi j,n + αRab
i j,n, (11)

where the residual Rab
i j,n of iteration n

Rab
i j,n = −gaib j −



c

tcbi j,nFac −


c

taci j,nFbc

+


k

tabk j,nFki +


k

tabik,nFk j (12)

is used as a search direction. In the conjugate residual method,
a line search is performed along the residual direction by
optimizing the α parameter. The line search affects the
convergence rate of the algorithm, but it does not influence how
new orbital spaces are introduced in the iterative algorithm.
For simplicity, we therefore set α = 1 in the rest of this
analysis.

In iteration n, the single fragment energy for fragment P
is

Ex
P,n =



Px
EOS

tabi j,nLia jb, (13)

where the summation over Px
EOS indicates a summation with

tabi j ,Lia jb ∈ Px
EOS as defined by Eqs. (8) and (9), i.e., for

the occupied partitioning scheme (x = o), the indices will
be restricted as i, j ∈ P and a,b ∈ [P], while, for the virtual
partitioning scheme (x = v), i, j ∈ [P] and a,b ∈ P. Using
Eqs. (11) and (13) the energy change in iteration n, ∆Ex

P,n, is
given by

∆Ex
P,n = Ex

P,n − Ex
P,n−1

=


Px
EOS

Rab
i j,n−1Lia jb, (14)

where Ex
P,0 ≡ 0. The converged single fragment energy may

then be written as

Ex
P =

ni t

n=1

∆Ex
P,n, (15)

where we have used Eqs. (13) and (14) and where Ex
P = Ex

P,ni t
and nit is the total number of iterations in the iterative scheme.
The residual Rn ∈ Px

EOS approaches zero with increasing n and
∆Ex

P,n therefore becomes negligible. In Sec. III A 2, we will
apply the iterative procedure defined by Eqs. (11) and (12) and
analyse the propagation of the orbital space throughout the
iterative procedure to identify the target orbital space required
for determining Ex

P to the predefined precision.

2. Propagation of orbital spaces during
the iterative procedure

The EOS amplitudes are defined in the Po
EOS and P v

EOS
spaces for the occupied and virtual partitioning schemes,
respectively, see Fig. 1. However, it is convenient to extend
these spaces slightly to put the locality analysis for the
occupied and virtual partitioning schemes on an equal footing.
We therefore introduce the target space, P1,

P1 = [P]2 × [P]2, (16)

which includes the EOS for both the occupied and virtual
partitioning schemes, (Po

EOS ∪ P v
EOS) ⊂ P1.

In the first iteration of the iterative procedure described
in Eqs. (11) and (12), all amplitudes are set to zero,

tabi j,1 = 0, (17)

and therefore Ex
P,1 = ∆Ex

P,1 = 0. The single fragment energy
is defined by the EOS amplitudes, and we therefore restrict
the residual of the first iteration to the target space P1. Using
Eq. (12), we thus obtain

Rab
i j,1 = −gaib j ∈ P1. (18)

Using Eqs. (11) and (17), the amplitudes of the second iteration
become

tabi j,2 = Rab
i j,1 ∈ P1. (19)

The energy difference between the first and second iterations
is thus

∆Ex
P,2 =



Px
EOS

Rab
i j,1Lia jb, (20)

where we have used Eq. (14). The EOS amplitudes in Eq. (19)
relax through the iterations and we now identify the coupling
mechanism leading to this relaxation.

In the second iteration, the amplitudes in P1 couple
directly to sites in the proximity of [P] through summations
with non-negligible Fock matrix elements in the residual of
Eq. (12). The total (extended) coupling environment of the
EOS amplitudes in iteration 2 is denoted [P]2 ([P] ⊂ [P]2).
For example, the following terms of Eq. (12) for the second
iteration illustrate space extensions of the occupied and virtual
spaces, respectively,



k ∈[P]
tabik,2Fk j tabik,2 ∈ P1, j ∈ [P]2, (21a)



c∈[P]
tcbi j,2Fac tcbi j,2 ∈ P1, a ∈ [P]2, (21b)

where we have used Eq. (19) to restrict the summations in
k and c. The residual of the second iteration is therefore
extended to the space

P2 = [P]22 × [P]22, (22)

which is illustrated by Fig. 3 and may be written as

Rab
i j,2 = −gaib j −



c

tcbi j,2Fac −


c

taci j,2Fbc +


k

tabk j,2Fki

+


k

tabik,2Fk j; Rab
i j,2 ∈ P2, tabi j,2 ∈ P1. (23)

For the following analysis, it is convenient to generalize the
notation of Eqs. (16) and (22) and introduce the space Pn,

Pn = [P]2n × [P]2n, (24)

FIG. 3. Iteration 2: The P1 space is symbolized by the squares in red and
magenta. The residual is generated in the P2 space (all colored boxes) where
the cyan squares symbolize the space extension P2\ P1 in iteration 2. This
space interacts directly with the orbitals of the target space P1.
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where [P]n ([P]n) is the set of occupied (virtual) orbitals
which have non-negligible Fock matrix elements with at least
one of the orbitals in [P]n−1 ([P]n−1) and where [P]1 ≡ [P]
([P]1 ≡ [P]). We also note that Pn−1 ⊂ Pn and we will denote
the space components of Pn which are not contained in Pn−1
as Pn \ Pn−1.

The amplitudes of the third iteration tab
i j,3 will be generated

in P2 according to Eqs. (11) and (21) giving the residual
Rab
i j,3 ∈ P3, such that more, yet untouched components, of the

environment of P enters the residual through the coupling
mechanism described in Eq. (21). The new space components
will not be coupled to P1 directly as the Fock matrix elements
between these spaces are negligible, see Fig. 4. The amplitudes
of the P3 \ P2 space thus interact directly with the amplitudes
of the P2 \ P1 space which in turn couples with the amplitudes
in the P1 space. Hence, the relaxation effects of the P3 \ P2
space on the EOS amplitudes will be small and indirect,
and these effects will therefore be referred to as secondary
coupling effects.

For the fourth and following iterations, these mechanisms
are preserved, i.e., additional couplings are introduced in the
already considered space and new spaces are introduced which
indirectly couple to the P1 space through other spaces. The
effects on the EOS amplitudes from the newly introduced
spaces thus become more indirect and smaller for each
successive iteration.

The above developments may be summarized as follows.
To evaluate the fragment energies, we need the amplitudes of
the Px

EOS ⊂ P1 space that were introduced in iteration 1. In the
second iteration, direct coupling to the outside spaceP2 \ Px

EOS
is introduced which affects the EOS amplitudes significantly.
The relaxation of the EOS amplitudes through the additional
components in the P2 \ Px

EOS space is therefore important for
the evaluation of the single fragment energy. The effects of the
additional spaces introduced in the following iterations affect
the EOS amplitudes only indirectly. The requested precision
will consequently define how much of the environment of P
has to be considered. Thus, we may introduce an effective
coupling space PEFF where the MP2 equations are solved to
give the EOS amplitudes to the requested (FOT) precision.
This effective space may be defined as

PEFF ≡ [P]2EFF × [P]2EFF. (25)

When calculating the single fragment energy, we may
correspondingly replace [P] and [P] in Eqs. (3) and (5)
by [P]EFF and [P]EFF, giving the occupied and virtual effective
EOS

FIG. 4. Iteration 3: The residual is generated in the P3 space (all colored
boxes) where the orbitals of sites with light yellow squares (P3\ P2) symbol-
ize the orbitals which interact directly with the orbitals of the P2\ P1 space
(cyan) through non-negligible Fock matrix elements, but not directly with the
orbitals of the P1 space (red and magenta).

Po,EFF
EOS ≡ P2 × [P]2EFF, (26)

Pv,EFF
EOS ≡ [P]2EFF × P

2
, (27)

which will be generically referred to as Px,EFF
EOS , while [P]EFF

and [P]EFF will be collectively referred to as [P]EFF. The
extent [P]EFF therefore defines bothPEFF (where the amplitude
equations are solved) and Px,EFF

EOS (where the single fragment
energy is evaluated).

B. Space extension in CCSD fragment calculations

The CCSD amplitude equations may be viewed as
a nonlinear extension of the MP2 amplitude equations
where the additional terms are of higher order in a
Møller-Plesset perturbation analysis.1 Thus, the energetically
largest contributions leading to a space extension have been
considered in Section III A 2. The focus of this section
is to analyze the space extensions that may be introduced
in the residual of Eq. (11) by the additional terms of the
CCSD amplitude equations. The CCSD singles residual in the
T1-transformed formulation may be expressed as1

CCSDRS = ΩA1 +ΩB1 +ΩC1 +ΩD1, (28)

and the CCSD doubles residual reads
CCSDRD = ΩA2 +ΩB2 +ΩC2 +ΩD2 +ΩE2, (29)

where the individual terms are given in Table I. The T1-
transformed integrals (denoted by a tilde in Table I) are given
by1

g̃qr st =


µνρσ

Λ
p
µqΛ

h
νrΛ

p
ρsΛ

h
σtgµνρσ, (30)

TABLE I. The CCSD residual equations as given in Ref. 1. Tildes denote
T1-transformed integrals, see Eqs. (30)-(33).

Doubles terms:
ΩA2

aib j
= g̃aib j+


cd t

cd
i j g̃acbd

ΩB2
aib j

=


kl t
ab
kl

(g̃kil j+


cd t
cd
i j g̃kcld)

ΩC2
aib j

= Pab
i j (1+ 1

2 Pi j)[−ck t
bc
ki

(g̃k jac− 1
2


dl t
ad
l j

g̃kdlc)]
ΩD2

aib j
= 1

2 P
ab
i j [cku

bc
jk

(L̃aikc+
1
2


dlu
ad
il

L̃ldkc)]
ΩE2

aib j
= Pab

i j [c t
ac
i j (F̃bc−dklu

bd
kl

g̃ ldkc)
−k t

ab
ik

(F̃k j+


cdlu
cd
l j

g̃kdlc)]

Singles terms:
ΩA1

ai =


cdku
cd
ki

g̃adkc

ΩB1
ai =−


cklu

ac
kl

g̃kilc

ΩC1
ai =


cku

ac
ik

F̃kc

ΩD1
ai = F̃ai

Definitions:
Pi jX

ab
i j = Xab

ji

Pab
i j Xab

i j = Xab
i j +X

ba
ji

uab
i j = (2−Pi j)tab

i j

L̃aib j = (2−Pi j)g̃aib j

F̃pq = h̃pq+


i(2g̃pqii− g̃piiq)= h̃pq+


ρσ D̃ρσ(2g̃pqρσ− g̃pρσq)
D̃ρσ =


iΛ

p
ρiΛ

h
σi
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where µ, ν, ρ, and σ are atomic orbital (AO) indices, and the
particle Λp and hole Λh transformation matrices are defined
via the MO coefficient matrix C as

Λp = C(1 − tT
1), (31)

Λh = C(1 + t1), (32)

and the t1 matrix is

[t1]pq =


tpq if p virtual and q occupied
0 otherwise


. (33)

When the singles amplitudes are neglected, CCSDRD

becomes the nonlinear CCD residual CCDR (removing the
tildes in the doubles terms in Table I). The starting point for
analyzing orbital space extensions for CCSD single fragment
energy calculations will be an analysis of the CCD residual
in Section III B 1, while we consider the effect of the CCSD
singles amplitudes in Section III B 2.

For the MP2 analysis in Section III A 2, we have
encountered the space extension mechanism caused by non-
negligible Fock matrix elements. For the CCD and CCSD
analysis, additional space extension mechanisms can be
identified. We will consider the following four mechanisms
which collectively represent error type 2 of Section II:

1. Propagation due to non-negligible Fock matrix elements
(identified in Section III A 2).

2. Propagation due to non-negligible charge distributions in
two-electron integrals.

3. Propagation due to long-range interactions between charge
distributions (dipole–dipole effects).

4. Propagation due to the Fock matrix constructed from a
T1-transformed density (charge-polarization effects).

Mechanisms 1, 2, and 3 are present for CCD and will be
discussed in Section III B 1, while mechanism 4 is present
only for CCSD and will be discussed in Section III B 2.

1. Space extension mechanisms in the CCD model

To analyse the space extension process in a CCD context,
we use the framework established for MP2 in Section III A
with the only modification that, when solving the nonlinear
CCD equations using the conjugate residual method, the
residual Rab

i j,n defined in Eq. (12) is replaced by the residual
CCDRab

i j,n.
The MP2 amplitude equations (Eq. (12)) correspond to

gaib j in ΩA2 and the Fock matrix terms of ΩE2 in the
CCD amplitude equations. The CCD equations thus contain
additional terms where two-electron integrals are contracted
linearly or quadratically with cluster amplitudes. The quadratic
terms do not contribute to the space extension of the residual
since all indices entering these contributions are fixed by
the amplitudes of the previous iteration. For example, in
the second part of the ΩB2

n term,


kl


cd tab

kl,n
tcdi j,ngkcld, the

integral indices are fixed to the space of the cluster amplitudes
of iteration n and therefore no space extension is introduced
by this component of the residual.

As an example for the space propagation according to
mechanism 2, we consider the second term of ΩA2

aib j,n
, i.e.,

ΩA2.2
aib j,n =



cd

tcdi j,ngacbd. (34)

At iteration n the amplitudes are defined in Pn−1, and the
dummy indices c and d are therefore restricted to this space.
Hence, the free indices a,b of the integrals gacbd are restricted
by the locality of the charge distributions ωac and ωbd.

All terms of CCD doubles residual may be grouped into
the categories following mechanism 1 or 2 except for one of
the terms inΩD2

n , denoted asΩD2.1
n , which follows mechanism

3,

ΩD2.1
aib j,n =



ck

tbcjk,ngaikc. (35)

Any additional space components Pn \ Pn−1 of iteration n
contribute via this term to the single fragment energy as
dipole–dipole interactions with an inverse sixth power decay
with the distance between center P and the charge distribution
ωkc. This may be understood from the perspective of a
residual component in the EOS, ΩD2.1

aib j,n
∈ Px

EOS, which enters
the single fragment energy in Eq. (14). The contribution
of the new space components Pn \ Pn−1 where the charge
distribution ωkc may be located decays with its distance from
Px

EOS in an inverse sixth order manner because ωkc occurs in
Eq. (35) in both the two-electron integral and the amplitudes,
both of which decay with the inverse third power27 of the
distance between ωkc and P. Furthermore, the contribution
from this direct long-range modification is expected to be
small since it only slightly modifies one of many residual
contributions ΩD2.1

aib j,n
+ · · · ∈ Px

EOS entering Eq. (14). Based
on this discussion, we expect that mechanism 3 has a small
effect on the single fragment energy which becomes important
only when very high precision is requested, which will be
substantiated numerically in Section III C and Appendix A.

2. Space extension mechanisms in the CCSD
model with focus on the effect of singles

In Section III B 1, we have described the progression
of the space extension for the cluster amplitudes in a CCD
calculation. In this section we examine the space progression
for CCSD with focus on the singles amplitudes. As for the
doubles amplitudes, the singles EOS amplitudes are defined
by Eqs. (3) and (5). We note from Table I that the indices i
and a of the singles amplitude equations are coupled only by
mechanisms 1 and 2, and their distance decay will thus be
similar to the Fock matrix and two-electron integral decays
(see Appendix A). Furthermore, since the singles amplitudes
enter quadratically in Eqs. (3) and (5), their direct effect on the
single fragment energy is expected to be significantly smaller
than the effect of the doubles amplitudes. However we need
to evaluate the coupling effects introduced by the singles into
the CCSD residual. For this reason, we first consider how
the T1-transformation introduces coupling effects through the
two-electron integrals. After this, special attention is given to
the T1-transformed Fock matrix.
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As an illustrative example of the effect of the T1-
transformation on the two-electron integrals, we consider
the integral contribution g̃aib j from Table I for the occupied
EOS, i.e., g̃aib j ∈ Po

EOS in an analogous argument as for the
ΩD2.1 term. Using Eq. (30) g̃aib j may be written as

g̃aib j = gaib j +


k

takgkib j + · · · + O(t2
1), (36)

where one example of a linear term is given and the
dots indicate further linear contributions. Terms, which are
quadratic and higher order in the singles amplitudes, are
very small and may be neglected for the purpose of this
analysis. Since we consider g̃aib j ∈ Po

EOS, the linear term in
Eq. (36) will only couple to the space outside Po

EOS through
non-negligible charge distributions ωki, where the k index
expands through mechanism 2 and its effect on the single
fragment energy quickly becomes negligible beyond P2. This
analysis thus suggests that the space extensions associated
with the T1-transformed two-electron integrals are captured by
the same mechanisms that describe the CCD space extension.

The ΩE2
n , ΩC1

n , and ΩD1
n terms have Fock matrix

contributions constructed from a T1-transformed density
matrix which, using Eqs. (31) and (32), can be written as

F̃ρσ = hρσ +


µν

D̃µν(2gρσµν − gρνµσ), (37)

D̃µν = Dµν +


ia

Cµitai Cνa, (38)

where Dµν is the HF density matrix for the full system.
The singles polarized part of the density matrix in Eq. (38)
introduces long-range charge-polarization effects into the AO
Fock matrix in Eq. (37). In a practical DEC calculation, only
the singles polarization effects within the [P]EFF space are
captured. This error type was denoted mechanism 4 in the
beginning of Section III B and it is only important for high
precision calculations. One possible strategy for including
long-range charge-polarization effects is to do as follows:

• Carry out all single fragment calculations and store
the (short-ranged) singles amplitudes tai with i ∈ P and
a ∈ [P]EFF for each fragment P.

• Collect all these contributions in a matrix tfull
1 with full

molecular dimensions.
• Construct an approximate T1 transformed density

matrix using tfull
1 in Eq. (38) (full molecule).

• Construct an approximate T1 transformed Fock matrix
F̃µν according to Eq. (37) (full molecule).

• A second round of single (and pair) fragment
calculations is carried out where the constructed Fock
matrix F̃µν is used (using a different subset of AO
indices {µ,ν} for each fragment as described in
Appendix B). In each fragment calculation F̃µν is
kept fixed throughout the local CC iterations.

We illustrate the effect of using a long-range corrected T1
transformed Fock matrix numerically in Section III C.

3. Summary for the space extension
in a fragment CCSD calculation

In summary, the theoretical analysis of the present
section demonstrates that, for both the MP2 and CCSD
models, calculations may be carried out where the amplitude
equations are solved in a subspace of the total orbital
space. For the MP2 model, coupling is introduced through
non-negligible Fock matrix elements (mechanism 1). For
the CCD and CCSD models, which include terms of
higher order in the fluctuation potential, additional coupling
mechanisms have been identified. Coupling through non-
negligible charge distributions in the two-electron integrals
(mechanism 2) concerns all terms in the CCSD amplitude
equations except the ΩD2.1 term in Eq. (35) (mechanism 3).
Since the distance decay of coupling mechanism 2 is usually
faster than the distance decay of the Fock matrix (see
Appendix A), mechanism 2 is in general taken into account
when mechanism 1 is considered. The coupling effects via
long-range dipole–dipole interactions (mechanism 3) and the
long-range polarization of the Fock matrix (mechanisms 4)
are expected to contribute to the coupling error only to a small
extent. We may therefore, in general, redefine the square
bracket notation [P]EFF as the orbital space that interacts with
P through any of the mechanisms 1-4, and conclude that the
amplitude equations may be solved in the associated subspace
PEFF of Eq. (25). The occupied (x = o) or virtual (x = v)
fragment energies Ex

P are then evaluated in Px,EFF
EOS of Eq. (26)

or (27) to within the predefined precision. Furthermore, we
can conclude that it may suffice to determine the fragment
space [P]EFF for a CCSD calculation using the MP2 model,
unless high precision is requested. Numerical results will be
given in Section III C to substantiate this point. We also note
that the perturbative triples correction to the CCSD energy,
CCSD(T), may be evaluated using the same fragment spaces
as for the DEC-CCSD calculation.31

Here, we have carried out the analysis of the fragment
sizes for the fragments referencing a single site in Eqs. (3)
and (5). We note that for the fragments referencing pairs of
sites in Eqs. (4) and (6), an analogous analysis results in the
same extensions due to the identical mechanisms in the MP2
and CCSD equations. The pair fragment spaces can thus be
obtained as unions of single fragment spaces.

C. Numerical support for the theoretical
developments

In this section we investigate the assumptions and
conclusions from Sections III A and III B for three
representative molecules with different chemical properties,
(i) palmitic acid (semi-linear molecule), (ii) a glycine
α-helix (bulky molecule), and (iii) Hexadeca-1,3,5,7,9,11,13,
15-octaene (conjugated system), see Table II. The structures
of these molecules are given as supplementary material.39 All
calculations in this section were performed with Dunning’s
cc-pVDZ basis set36 using the frozen core approximation in
order to have molecules with a reasonable spatial extent where
it is still possible to carry out the reference calculations for the
full system. The orbitals have been localized using the second
power of the second moment orbitals.37,38
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TABLE II. Test set of molecules for the single fragment optimization algo-
rithm. See supplementary material39 for the atomic coordinates.

System label Chemical compound Basis set

(i) Palmitic acid cc-pVDZ
(ii) gly4 α-helix cc-pVDZ
(iii) Hexadeca-1,3,5,7,9,11,13,15-octaene cc-pVDZ

(iv) Lauric acid cc-pVTZ
(v) gly3 α-helix cc-pVTZ
(vi) Dodeca-1,3,5,7,9,11-hexene cc-pVTZ

The prerequisite for the theoretical fragment analysis of
Section III was the distance decay of the two-electron integrals
and the Fock matrix elements from a specific center P in the
molecule. This prerequisite is confirmed in Appendix A for
the set of test molecules and the single fragment energies
Ex
P may therefore be determined to a predefined tolerance by

solving the amplitude equations in a restricted orbital space
PEFF.

In the following we will exemplify the sizes of coupling
spaces that are necessary in actual calculations to determine
the fragment energy Ex

P for a set of selected atomic sites P.
Specifically we choose as site P the protonated oxygen of
system (i), the α-carbon of the N-terminal glycine of system
(ii), and one of the terminal carbons of system (iii). All sites
were chosen at the rim of the molecules to better expose the
distance decay behaviors of the fragment energy errors.

In Fig. 2 we have schematically illustrated how the
coupling space can be identified. Below, we describe a
practical realization of Fig. 2. To obtain the magenta line
of Fig. 2, the absolute errors in Ex

P, |∆Ex
P | are plotted for

calculations where the amplitude equations have been solved
in the full orbital space Pfull (all orbitals of the molecular
system are included) and [P]EFF in Px,EFF

EOS is truncated at a
given distance RP from center P (denoted Approach A). For
the green line in Fig. 2, a practical realization is obtained by
plotting errors in Ex

P, where [P]EFF is truncated at a given
distance RP in both the space where the amplitude equations
are solved PEFF and in the EOS Px,EFF

EOS (denoted Approach B).
The practical errors in Ex

P for both the occupied (x = o) and
virtual (x = v) partitioning schemes are given in Fig. 5 for
the three selected fragments in the upper and lower rows,
respectively.

For approach A (magenta curves), the error in the single
fragment energy converges rapidly and with a very similar
rate with the distance RP for both models (MP2A or CCSDA)
and both partitioning schemes. For approach B (green curves),
larger spaces are needed for both MP2B (circles) and CCSDB

(triangles) models. The MP2B fragment energy errors are
always positive and converge smoothly to the correct result,
whereas the CCSDB fragment energy errors have a somewhat
more erratic behavior as well as occasional artificially low
errors due to changes in the sign of the CCSDB fragment
energy errors when increasing the fragment orbital space.
The sign of the fragment energy errors for MP2B may be
understood from the MP2 correlation energy expression in

FIG. 5. Decay of the MP2 and CCSD fragment energy errors, upon increasing the orbital space for the three test systems (i), (ii), and (iii) and both the occupied
(o) and virtual (v) partitioning schemes, given in the upper and lower rows, respectively. The amplitude equations have been solved in the full space (only error
type 1, magenta, superscript A) and in a restricted orbital space (error type 1+2, green, superscript B).
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FIG. 6. Effect of the singles polarization in the Fock matrix (mechanism 4) for the three test systems (i), (ii), and (iii) for both the occupied (o) and virtual (v)
partitionings, given in the upper and lower rows, respectively. The green curves (CCSDB) include the error introduced by mechanism 4, which has been removed
for the yellow curves (CCSDC) by using the exact singles polarized Fock matrix.

the canonical basis, which effectively contains a summation
over squared two-electron integrals divided by negative orbital
energy differences. Hence, any truncation of this expression
would lead to an energy that is less negative than the true
canonical MP2 energy. Although the fragment energies are
evaluated in the local basis, this feature carries over to the
MP2 fragment energies, i.e., any truncation leads to MP2B

fragment energies that are not negative enough. No such
simple expression exists for the standard CCSD energy,
which requires the solution of the non-linear CCSD amplitude
equations, and the sign of the CCSDB fragment errors can
therefore alternate as the fragment is expanded due to changes
in the coupling environment in the CCSD fragment amplitude
equations.

The horizontal difference between the green and magenta
curves in Fig. 5 displays the size of the coupling space needed
for a given precision. We note that the size of the coupling
space depends on the model, the molecule, and the partitioning
scheme. For |∆Ex

P | values larger than 10−4 a.u., the coupling
spaces are of similar size for the three test fragments. For
smaller |∆Ex

P | values, the conjugated system (iii) requires
larger coupling spaces than systems (i) and (ii), in particular
for the virtual partitioning scheme.

In order to study the effect of the polarization of the
Fock matrix by the singles amplitudes (mechanism 4, in
Section III B 2), we introduce the CCSDC model where we
eliminate errors from coupling mechanism 4 by using a singles
polarized Fock matrix F̃ (see Table I) constructed from the
converged singles amplitudes (no approximations in Eq. (38)).

In Fig. 6, we report calculations for the three test
fragments for the models CCSDB and CCSDC. From Fig. 6 it is
evident that eliminating mechanism 4 in general decreases the
CCSD fragment energy error. In particular, for the conjugated
system, correcting for coupling mechanism 4 leads to reduced
fragment sizes in the high-precision regime.

In summary, the calculations of the current section support
the general conclusion of Sections III A and III B. Fragment
energies to a given precision can be obtained by solving the CC
amplitude equations in a restricted space when local orbitals
are used, and unless high precision is requested, the fragment
orbital spaces obtained at the MP2 level may be sufficient
for CCSD calculations. For high-precision calculations, it was
shown that it may be beneficial to account for the singles
polarization of the Fock matrix in order to obtain smaller
fragments. However, the investigation also shows that the
coupling spaces depend on the model, the partitioning scheme,
and the molecule and, in particular, that larger spaces may be
necessary for the virtual partitioning scheme. In Section IV
we develop a black box algorithm for determining the local
fragment orbital spaces.

IV. PRACTICAL IMPLEMENTATION: DETERMINING
SINGLE FRAGMENT ORBITAL SPACES

In the theoretical locality analysis of Section III, we
have identified the various coupling mechanisms that arise
when MP2 and CCSD amplitude equations are solved in a
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restricted orbital space. In this section we describe a practical
implementation for the determination of single fragment
orbital spaces such that the single fragment energy error
is of the requested (FOT) precision.

The single fragment optimization algorithm for the single
fragment energy Ex

P includes two main steps: the single
fragment expansion procedure where [P]EFF is increased until
the energy difference between the last two expansion steps is
lower than the FOT, and the reduction procedure where [P]EFF
is fine tuned (reduced) without compromising the precision of
the single fragment energy.

For the discussion of the single fragment optimization
procedure, it is convenient to introduce the reference single
fragment energies Ex, f

P , evaluated from Px,full
EOS (all orbitals

included in Eqs. (26) and (27))

Eo, f
P =



i, j ∈P



ab

τ
ab, f
i j Lia jb, (39)

Ev, f
P =



i j



a,b∈P
τ
ab, f
i j Lia jb, (40)

where the amplitudes τab, fi j are obtained from Pfull.

A. Expansion of the orbital space

In the first step of the single fragment expansion
algorithm, the local orbitals are ordered according to a
measure that estimates their contribution to the single fragment
energy Ex

P. Based on the analysis in Section III, a simple yet
reasonable measure is the distance between the orbital’s center
of charge and the center P of the single fragment. In each
expansion step a predefined number of orbitals (vide infra)
is added to the single fragment orbital space [P]EFF. The
single fragment expansion is illustrated in Fig. 7 (left). In each
expansion step, the energy is evaluated at the requested level
of theory using Eqs. (3) and (5), and the energy difference
between two subsequent steps i and i + 1 is calculated,

δeEx
P(i) = |Ex

P(i) − Ex
P(i + 1)|. (41)

The expansion procedure continues until δeEx
P(n − 1) < FOT,

and the energy contribution from orbitals not included in
[P]EFF of step n is therefore assumed to be below the
requested precision. In the following, we consider the space

of expansion step n, [P]nEFF, as the reference space [P]REF
and its associated energy, Ex

P(n), as the reference energy EREF
P

for the single fragment reduction procedure. Thus, for the
requested (FOT) precision, we assume |EREF

P − Ex, f
P | ≪ FOT,

which is a reasonable assumption due to the rapid decay of
the single fragment energy with respect to the inclusion of
additional orbitals provided enough orbitals are included in
each step, see, e.g., Fig. 5. In order for |EREF

P − Ex, f
P | ≪ FOT

to hold, the number of orbitals added in each expansion step
needs to be large enough to avoid false convergence, but
also small enough to avoid that the expanded orbital space
[P]REF becomes unacceptably large. In practice we include
5 · norb/natoms orbitals in each expansion step, where natoms is
the number of atoms and norb is the number of orbitals in the
molecule. Extensive testing has shown that this choice is a
reasonable compromise between accuracy and computational
cost.

B. Reduction of the orbital space

The reduction step defines the final single fragment orbital
spaces and thus the pair fragment orbital spaces which are
obtained as unions of single fragment spaces. Since the pair
fragment calculations dominate the total DEC calculation, it is
crucial to reduce the single fragment sizes as much as possible
within the chosen FOT precision to reduce the cost of the total
calculation. To achieve this, a binary search algorithm is used
in connection with a priority list of orbitals where the energy
of the expanded single fragment, EREF

P , serves as a reference.
For the calculations presented in Section V, we have chosen
the same distance ordered list as in the expansion procedure.
This is an obvious choice but other lists that produce similar
results have also been tested (e.g., a list based on orbital
contributions to the single fragment energy, or the absolute
size of Fock matrix elements). The priority list is used to
remove the least important orbitals of the [P]REF orbital space
in the reduction procedure, see Fig. 7 (right). After each step
j in the binary search algorithm, the energy is evaluated and
compared to the energy of the reference single fragment,

δrEx
P(n + j) = |Ex

P(n + j) − EREF
P |. (42)

The step is accepted if

δrEx
P(n + j) < FOT, (43)

FIG. 7. The general single fragment
optimization algorithm consists of two
steps. In the single fragment expan-
sion procedure (left), a reference orbital
space is determined based on Eq. (41).
In the reduction procedure (right), this
reference orbital space is fine-tuned us-
ing a binary search algorithm where the
step direction is based on Eq. (42). Red:
Orbitals included in the current single
fragment. Blue: Expansion priority list
of orbitals. Green: Reduction priority
list of orbitals. Grey: Discarded orbitals.
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and in this case the next step is chosen to further decrease
the single fragment size. On the other hand, if δEx

P ≥ FOT,
the next step is chosen to increase the single fragment size,
see Fig. 7. This process is repeated until the orbital space
[P]EFF does not change significantly, e.g., if the difference in
the number of orbitals between two subsequent steps is less
than 5% of the number of orbitals in [P]REF. The final single
fragment orbital space is the one that corresponds to the last
accepted step of the reduction procedure.

C. Summary and cost reduction considerations

The single fragment optimization algorithm in Fig. 7 is by
no means unique but it is a model- and molecule-independent
and easily programmable black-box approach, which ensures
that each single fragment energy has a precision corresponding
to the input FOT and thus ultimately defines the precision of

the total calculation. We also note, that the single fragment
optimization may be performed for x = o, x = v , or both
simultaneously.

In order to reduce the cost of the single fragment
optimization, it can be performed at a lower level of theory
than that of the target model. For example, for a DEC-CCSD
calculation, it may be possible to determine the single fragment
orbital spaces by applying the procedure in Fig. 7 to the MP2
model. As will be described in Section V, this is a feasible
approach for a typical FOT (e.g., FOT = 10−4 a.u.), while for
high-precision work, a reliable DEC-CCSD energy requires
that the CCSD model is also used for the single fragment
optimization algorithm in Fig. 7, in particular if the virtual
partitioning scheme is used. In this case, the convergence of
the single fragment optimization procedure is evaluated based
on both the CCSD and the MP2 single fragment energies
(MP2/CCSD) in order to avoid false convergence that might

FIG. 8. Distribution of the absolute single fragment energy errors |∆E x
P | with respect to calculations in the full orbital spaces for both occupied (x = o, left

column) and virtual (x = v, right column) partitioning schemes. The DEC single fragment orbital spaces have been optimized at the MP2 and MP2/CCSD levels
of theory to obtain the MP2 and CCSD single fragment energy errors, respectively. Top panel: FOT= 10−3 a.u.; middle panel: FOT= 10−4 a.u.; bottom panel:
FOT= 10−5 a.u.

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  130.225.21.22 On: Thu, 28 Apr
2016 15:00:46



164116-12 Ettenhuber et al. J. Chem. Phys. 144, 164116 (2016)

occur because the sign of the CCSD errors might alternate
during the expansion/reduction procedure (MP2 errors are in
general positive). It is also possible to further reduce the cost
by invoking, e.g., the resolution–of–the–identity (RI) in the
single fragment optimization algorithm.32

Finally, we note that in each fragment calculation, the
AO space is truncated by fitting the MOs as described in
Appendix B. This reduces the number of AO integrals that
need to be evaluated.

V. NUMERICAL ILLUSTRATIONS

The algorithm devised in Fig. 7 is a black-box method that
operates based on the locality considerations of Section III.
In this section we numerically demonstrate that this algorithm
leads to single fragment energies with the requested precision.

We have performed a series of calculations on six different
systems using Dunning’s correlation consistent cc-pVDZ
and cc-pVTZ basis sets36 (see Table II and supplementary
material39 for the atomic coordinates), and for the orbital
localization, we have used the second power of the second
moment localized orbitals.37,38 For all calculations, the single
fragment optimization in Fig. 7 was carried out for both
partitioning schemes simultaneously. The calculations used
the frozen core approximation and were carried out using
a local version of the  program.40,41 For the CCSD
calculations, we have not used the long-range corrected Fock
matrix.

In Fig. 8, we have plotted the distributions of the
numerical values of the single fragment energy errors
|∆Ex

P | = |Ex
P − Ex, f

P |, where Ex, f
P is given by Eqs. (39) and (40)

and requires calculations on the full molecular systems. This
investigation is therefore limited to molecules for which the

FIG. 9. Distribution of the absolute single fragment energy errors |∆E x
P | with respect to calculations in the full orbital spaces for both occupied (x = o, left

column) and virtual (x = v, right column) partitioning schemes. The DEC single fragment orbital spaces have been optimized at the MP2 level of theory to
obtain the MP2 and CCSD single fragment energy errors. Top panel: FOT= 10−3 a.u.; middle panel: FOT= 10−4 a.u.; bottom panel: FOT= 10−5 a.u.
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full calculation is feasible at the MP2 and CCSD levels
of theory. The orbital spaces ([P]EFF) for the calculations
presented in Fig. 8 were optimized at the MP2 level of
theory for the MP2 single fragment energy errors, and at the
combined MP2/CCSD level of theory for the CCSD single
fragment energy errors using the algorithm in Fig. 7 and for
decreasing values of the FOT (top panels 10−3 a.u., middle
panels 10−4 a.u., lower panels 10−5 a.u.). In general, the single
fragment optimization procedure leads to errors that are of the
requested precision, but errors slightly larger than the FOT
may occur, because the single fragment reduction procedure
in Fig. 7 relies on the assumption |EREF

P − Ex, f
P | ≪ FOT, see

Section IV A. However, in general Fig. 8 shows that when the
FOT is specified, the expansion–reduction procedure in Fig. 7
gives single fragment energies that are of the size of the FOT
(or smaller).

In Fig. 9, we have plotted the distributions of the
numerical values of the single fragment energy errors
|∆Ex

P | = |Ex
P − Ex, f

P | when the orbital spaces [P]EFF have been
optimized at the MP2 level of theory to obtain both the MP2
and CCSD single fragment energy errors using the algorithm
in Fig. 7 and for decreasing values of the FOT. The MP2
single fragment energy errors are of course the same as in
Fig. 8. However, the CCSD single fragment energy errors
are not as well-behaved as in Fig. 8. For example, for the
virtual partitioning scheme, the CCSD errors are in general
below the requested precision for FOT = 10−3 a.u., while
single fragment energy errors of 5 · 10−4 (1 · 10−4) a.u. occur
for a FOT of 10−4 (10−5) a.u. For the occupied partitioning
scheme, the single fragment energy errors are surprisingly
well-behaved and the CCSD single fragment energy errors
are in general of the size of the FOT. From a pragmatic
point of view, an important implication is that for the FOTs
of practical interest considered here, the local orbital spaces
determined at the MP2 level of theory can also be used for
CCSD calculations, if only the occupied partitioning is used.
This leads to significant savings compared to carrying out
the single fragment optimization at the CCSD level of theory,
particularly for the largest single fragment calculation (the
nth step in Fig. 7). It is, however, important to emphasize
that a DEC-CCSD calculation with rigorous error control
requires that the single fragment optimization is carried out at
the combined MP2/CCSD level of theory. This becomes
especially important when both partitioning schemes are
needed in order to calculate molecular gradients.28

As a last point of this section, we would like to emphasize
the importance of the second part of the single fragment
optimization algorithm in Fig. 7, the single fragment reduction
procedure. A comparison of the size of the orbital space before
and after the single fragment reduction shows a reduction of
the occupied space by 28% on average, while the virtual
space is typically reduced by 35% to 40%. In terms of a
V 4O2 scaling CCSD algorithm, that corresponds to a mean
cost reduction of each fragment calculation by more than one
order of magnitude. Such savings are crucial to reduce the
computational cost for the pair fragments (unions of single
fragment spaces) which dominate the calculation.

In conclusion, the numerical data provided in this section
support the theoretical analysis in Section III and show that

the algorithm in Fig. 7 is a useful practical implementation
for determining local orbital spaces.

VI. CONCLUSION

In this article we have carried out a theoretical locality
analysis and a subsequent practical implementation to
demonstrate how the nonlinear set of CCSD amplitude
equations for DEC fragment calculations may be solved
to within a desired precision using a restricted set of
local HF orbitals. A practical algorithm for determining the
local orbital spaces needed to obtain the single fragment
(and hence pair fragment) energies to within the requested
precision has been implemented based on the principles
identified in the theoretical analysis. The practical algorithm is
focused on determining the smallest possible single fragment
spaces (within the desired precision) in order to reduce
the cost for the time-dominating pair fragment calculations
as much as possible. We have finally demonstrated the
numerical effectiveness and robustness of the single fragment
optimization algorithm. In short, a solid theoretical foundation
for local CCSD calculations and the identification of local
orbital spaces has been established.

With the theoretical analysis, we have identified two error
sources that are present when the single fragment energy is
evaluated in a restricted orbital space, i.e., (a) the direct energy
contribution of omitted orbitals and (b) the relaxation effects
of omitted space components when solving the amplitude
equations. When solving the CCSD amplitude equations in a
restricted orbital space, four distinct relaxation mechanisms
have been identified, i.e., a relaxation through (1) non-
vanishing Fock matrix elements, (2) non-vanishing charge
distributions in the two-electron integrals, (3) long-range
(dipole–dipole) contributions in the two-electron integrals,
and (4) long-range (charge-polarization) contributions from
the T1-transformed Fock matrix. Mechanism (1) was found to
be the dominant mechanism, and only when higher precision
is requested (FOT < 10−4 a.u.) mechanisms (2)-(4) become
important. It was demonstrated that the effects of mechanisms
(2) and (3) had a similar spatial extent as mechanism (1), while
the effects of mechanism (4) could be partially remedied
by constructing an approximate long-range T1 transformed
density matrix with singles amplitude contributions from all
single fragments. For the occupied partitioning scheme, the
single fragment orbital spaces may be determined at the MP2
level for a DEC-CCSD calculation, while, for the virtual
partitioning scheme, it is in general necessary to determine
the single fragment orbital spaces at the CCSD level to
ensure robustness of the results. In general, the theoretical
and numerical results thus demonstrate that the local orbital
spaces are model- and molecule-dependent, underlining the
importance of using a black-box algorithm for determining
the local orbital spaces.
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APPENDIX A: CHECKING THE INITIAL CONDITIONS
OF THE FRAGMENT ANALYSIS

The prerequisites for the theoretical fragment analysis in
Section III were that the two-electron integrals and the Fock
matrix decay with the distance seen from a specific center
P in the molecule. In this appendix, we numerically verify
this assumption. In Fig. 10, we display the decay of the Fock
matrix and the two-electron integrals from the perspective of
the centers used in Section III C. For simplifying the plots,
only the maximum value within intervals of 1.3 Å is given.

From Fig. 10, it is evident that the initial assumptions
of Section III hold for all three chosen fragments, although
there are minimal differences for the systems. Note that for
all three systems, the virtual–virtual block (blue circles) of

the Fock matrix (mechanism 1) has the largest contributions
at a given distance. The observed difference between the
charge distribution decay (red pluses, mechanism 2) and the
long-range dipole–dipole decay (cyan triangles, mechanism
3) of the two-electron integrals for the three fragments under
investigation is minimal.

In Fig. 11 we compare the (charge distribution) decay of
the singles (blue circles) and doubles (green x) amplitudes
for the three fragments under investigation. As expected, the
doubles amplitude decays roughly follow the decay behaviours
of the corresponding two-electron integrals (mechanism 2) in
Fig. 10 and thus the decay is slowest for system (iii).

APPENDIX B: DEFINING LOCALITY OF MOLECULAR
ORBITALS AND SINGLE FRAGMENT EXTENTS

In a DEC calculation, a localized HF MO φPr is assigned
to the atomic site P where its Löwdin atomic charge Qr

atom
is largest. In case two atoms have similar Löwdin atomic
charges, it is not important which atom a local orbital
is assigned to, since the fragment optimization procedure
ensures that the local orbital spaces are adapted to the specific
orbital assignment, such that the atomic fragment energy is
determined to the requested precision. Even though the bulk
of φPr is confined to a small volume of space, φPr has small

FIG. 10. The decay of the occupied–occupied Fock matrix elements Fi j with i ∈ P, j ∈ [P] (mechanism 1, green x) and the virtual–virtual Fock matrix
elements Fab with a ∈ P,b ∈ [P] (mechanism 1, blue circles) with the distance from the chosen sites P for systems (i), (ii), and (iii) is compared to the charge
distribution decay in the two-electron integrals gaib j with i, j,b ∈ P,a ∈ [P] (mechanism 2, red pluses) and the long-range dipole–dipole decay in gaib j with
i,a ∈ P, j,a ∈ [P] (mechanism 4, cyan triangles).

FIG. 11. The decay behaviours of the singles (blue circles) and doubles (green x) amplitudes with the distance to the chosen sites P of systems (i), (ii), and (iii).
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expansion coefficients on AOs located some distance away
from P. In this appendix we describe how this tail region may
be treated without considering explicitly the AOs at which the
small expansion coefficients are situated. This development is
used to reduce the number of AOs and thereby the number
of AO integrals which have to be evaluated. The procedure
described here is very similar to the one described in Section
6.1 of Ref. 26. However, there are subtle differences, and for
completeness the current implementation of the procedure is
summarized here.

The HF orbital φPr ,

φPr =


µ

χµcPµr , (B1)

may be approximated in the following way:

φ̃Pr =


µ̃

χ µ̃c̃Pµ̃r , (B2)

where the µ̃-summation is restricted to AOs which in some
sense are neighboring the atomic site P (to be detailed below).
The expansion coefficients of φ̃Pr may be determined from a
least squares fit, i.e., by minimizing the function f (c̃P),

f (c̃P) =∥ φ̃Pr − φPr ∥= ⟨φ̃Pr − φPr |φ̃Pr − φPr ⟩, (B3)

with respect to the c̃ coefficients. This gives the expansion
coefficients

c̃Pµ̃r =


ν̃η

(S̃)−1
µ̃ν̃Sν̃ηcPηr , (B4)

where the dimensions of the overlap matrices are defined by
the restrictions that are imposed on the AO indices, i.e.,

S̃µ̃ν̃ = ⟨χ µ̃ | χν̃⟩, (B5)
Sν̃η = ⟨χν̃ | χη⟩. (B6)

For each MO φPr , a prioritized list of AOs may be generated
by quantifying the importance of each AO χµ according to
its Löwdin charge Qr

µ, noting that the sum over all Löwdin
charges for MO φPr equals one. We include AOs from this list
until one minus the sum of Löwdin charges is smaller than a
given threshold δ,

1 −


µ̃

Qr
µ̃ < δ, (B7)

where δ is a small prefixed number. This procedure defines
a set of AOs for each MO φPr , which we denote the orbital
extent {φPr }. The union of orbital extents for all MOs in the
effective orbital space [P]EFF is denoted the atomic fragment
extent {P}. The {P} space defines the set of AOs used to
describe the MOs in single fragment P, i.e., it defines the
restriction on the µ̃-summation in Eq. (B2). Thus, all MOs in
the fragment are fitted using the same set of AOs to ensure
a uniform description. We note that a screening of atomic
centers in accordance with Eq. (B7) was used by Boughton
and Pulay42 for the occupied HF orbitals as a completeness
criteria for the assignment of local excitation spaces.

In practice we use δ = 0.05 to define the orbital extents.
This might appear to be a very crude value; however, the effect
of approximating the MOs is minor because they are fitted
using the union of all orbital extents. In particular, for the MOs

close to site P (large single fragment energy contributions),
the fitting procedure has virtually no effect, while it slightly
modifies the MOs far from P (small single fragment energy
contributions). The fitting procedure therefore has a very
minor effect on the single fragment energy. Furthermore,
each step of the fragment expansion in Fig. 7 not only
includes new energy contributions and new coupling effects
by including more MOs, but it also improves the description
of the MOs already included in the previous fragment ({P} is
enlarged). The effect of the approximation in Eq. (B2) is thus
automatically taken into account by the fragment optimization
procedure.
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The Resolution of the Identity second-order Møller-Plesset perturbation theory (RI-MP2) method
is implemented within the linear-scaling Divide-Expand-Consolidate (DEC) framework. In a DEC
calculation, the full molecular correlated calculation is replaced by a set of independent fragment
calculations each using a subset of the total orbital space. The number of independent fragment calcu-
lations scales linearly with the system size, rendering the method linear-scaling and massively paral-
lel. The DEC-RI-MP2 method can be viewed as an approximation to the DEC-MP2 method where the
RI approximation is utilized in each fragment calculation. The individual fragment calculations scale
with the fifth power of the fragment size for both methods. However, the DEC-RI-MP2 method has a
reduced prefactor compared to DEC-MP2 and is well-suited for implementation on massively parallel
supercomputers, as demonstrated by test calculations on a set of medium-sized molecules. The DEC
error control ensures that the standard RI-MP2 energy can be obtained to the predefined precision. The
errors associated with the RI and DEC approximations are compared, and it is shown that the DEC-
RI-MP2 method can be applied to systems far beyond the ones that can be treated with a conventional
RI-MP2 implementation. C 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4940732]

I. INTRODUCTION

The resolution-of-the-identity (RI) approximation1–5 has
emerged as an important tool to reduce the computational
cost of second-order Møller-Plesset perturbation theory6

(MP2) and related methods. The RI approximation was
first applied to MP2 by Feyereisen et al.,7 and subsequently
implemented by different groups.8–18 For reviews, the reader is
referred to Refs. 19 and 20. In RI-MP2, also denoted density-
fitting MP2 (DF-MP2), the four-center electron repulsion
integrals (ERIs) are decomposed into a sum involving only
two-center and three-center ERIs. The RI technique reduces
the computational cost as well as the required memory
considerably by removing the linear dependencies of the
original atomic orbital (AO) product basis while maintaining
reliable accuracies for practical chemical applications. The
development of optimized auxiliary basis sets21–25 has reduced
the error introduced by the RI approximation, and the
error is often judged to be so small that RI-MP2 is
the recommended method for calculating energies of MP2
quality. It should also be noted that MP2 with Cholesky
decomposition of the ERIs is in many ways similar to
RI-MP2.26–28

For large molecular systems, conventional RI-MP2
implementations encounter a scaling wall, both memory- and
time-wise. The correlation effects described by the RI-MP2

a)Electronic mail: pablo.baudin@chem.au.dk
b)Electronic mail: tkjaergaard@chem.au.dk

method are local, and the steep scaling of the method with the
system size — O(N5) where N is a measure of the system
size — is therefore unphysical. In the last decades, many
groups have been developing alternative implementations of
RI-MP2 in order to reduce the fifth order scaling using the
locality of correlation effects (see Ref. 20 for a review of new
developments within MP2 theory). One approach consists
in compressing the number of wave function parameters
required to describe the correlation energy by using projected
atomic orbitals (PAOs) and pair natural orbitals (PNOs)12,29

or orbital specific virtual orbitals (OSVs).30 Ochsenfeld
and co-workers have developed an AO-MP2 algorithm,
where the orbital energy denominator is eliminated from
the conventional molecular orbital (MO)-based MP2 energy
expression by means of a Laplace transformation31,32 to
obtain a formulation in terms of AO integrals. Since AOs
are local by construction, efficient integral screening may
be performed.33–35 Pioneer work in that direction was done
by Ayala and Scuseria.36 Another commonly used approach
for carrying out approximations in a MP2 calculation relies
on a physical fragmentation of the molecular system and
performing standard canonical calculations for each of the
fragments before collecting the information for the full
system. This category of methods includes the divide and
conquer (DC),37 the Fragment Molecular Orbital (FMO)
methods,38–41 the Molecular Tailoring Approach (MTA),42

and the systematic molecular fragmentation approach.43

Yet another category of methods for obtaining linear-
scaling MP2 energies relies on a partitioning of the orbital

0021-9606/2016/144(5)/054102/10/$30.00 144, 054102-1 © 2016 AIP Publishing LLC
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space rather than on a physical fragmentation of the
molecule. This category contains the cluster in a molecule
(CIM) method,44,45 the incremental scheme,46 and our recently
proposed local correlation method, the Divide-Expand-
Consolidate (DEC) scheme.47–52 In a DEC calculation, the
correlation energy is expressed in terms of local molecular
orbitals,53–64 and the full molecular calculation is replaced
by a set of independent fragment calculations. The number
of fragments scales linearly with the system size, rendering
the method linear-scaling and massively parallel. The linear-
scaling and parallel performance of the DEC-MP2 model has
been demonstrated recently.65

In this paper, the DEC scheme is applied in connection
with the RI-MP2 method. The overall linear-scaling properties
of the DEC-MP2 scheme are not affected when the RI approx-
imation is applied in the fragment calculations. However,
the DEC-RI-MP2 method has a reduced computational cost
as well as reduced memory requirements compared to the
DEC-MP2 method. The resulting DEC-RI-MP2 method thus
provides an efficient linear-scaling and massively parallel
algorithm for the calculation of MP2 energies with rigorous
error control.

In a DEC-MP2 calculation, the error introduced compared
to a canonical MP2 calculation is controlled by the fragment
optimization threshold (FOT).47,48 The canonical MP2 result
is thus systematically approached when the FOT is tightened.
Compared to the canonical MP2 energy, the DEC-RI-MP2
model contains an intrinsic DEC error governed by the FOT
as well as an error associated with the RI approximation.
In this work, we compare these two errors to analyze the
performance of the DEC-RI-MP2 model. We also show that
the DEC-RI-MP2 algorithm can be applied to systems that are
much larger than the ones that can be treated using a standard
RI-MP2 implementation.

The paper is organized as follows. In Section II, we
present the basic equations of the DEC model and introduce
the RI approximation. In Section III, we present numerical
results and perform a detailed error and performance analysis
for the DEC-RI-MP2 model. The parallel performance is
discussed in Section IV, while Section V contains some
conclusive remarks.

II. THEORY

A. The divide-expand-consolidate energy expression

The MP2 correlation energy EMP2
corr for a closed shell

molecule may be expressed as66

EMP2
corr =



ijab

tab
ij

�
2gaibj − gbiaj

�
, (1)

where tab
ij are the MP2 doubles amplitudes. In this article, the

indices i, j (a,b) refer to occupied (virtual) localized real HF
orbitals, and gaibj is a 4-center ERI in the local molecular
orbital (MO) basis using the Mulliken notation. Assigning
each orbital to an atomic site (given by the nuclear positions
P,Q, . . .), the summation over two occupied orbitals in Eq. (1)
may be replaced by a summation over atomic sites and pair

sites,

EMP2
corr =



P

EP +


P>Q

∆EPQ. (2)

The atomic fragment energy EP and the pair interaction energy
∆EPQ are defined according to

EP =


ij∈P



ab

tab
ij (2gaibj − gbiaj), (3)

∆EPQ =


i∈P
j∈Q



ab

tab
ij (2gaibj − gbiaj) +



i∈Q
j∈P



ab

tab
ij (2gaibj − gbiaj),

(4)

where P denotes the set of occupied orbitals assigned to
atomic site P.

Using a local HF orbital basis, the free summations over
virtual orbitals ab in the atomic fragment energy EP may be
restricted. This is justified by the fact that the integrals gaibj

(with i j ∈ P) vanish for virtual orbitals spatially far from the
atomic site P. We introduce the notation [P] for the set of
virtual orbitals spatially close to atomic site P in the sense that
the integrals gaibj are non-vanishing (to the desired precision),
and the virtual summations in Eq. (3) may thus be restricted
to the [P] space. A similar replacement leading to the union
of orbital spaces is introduced for the pair interaction energy
∆EPQ,48 and Eqs. (3) and (4) may thus be written as

EP =


i j ∈P



ab∈[P]
tab
ij (2gaibj − gbiaj), (5)

∆EPQ =


ab∈[P]∪[Q]

(

i∈P
j∈Q

tab
ij (2gaibj − gbiaj)

+


i∈Q
j∈P

tab
ij (2gaibj − gbiaj)

)
. (6)

The details on how each local molecular orbital is assigned
to atomic sites and how the [P] space is obtained is not the
subject of this paper, and the reader is referred to Ref. 48. Here
we just note that the [P] space is determined in a black box
manner such that the error of EP is smaller than the FOT, which
is the central threshold that defines the precision of a DEC
calculation. Naturally, in the limit where the space [P] includes
all virtual orbitals for all atomic sites P, the conventional
MP2 correlation energy is recovered. The approximations
introduced in Eqs. (5) and (6) are summarized in Section II C
along with other approximations of the DEC-RI-MP2 scheme.

The set of orbitals used to evaluate the fragment energy
is denoted the energy orbital space (EOS), i.e., for atomic
fragment P in Eq. (5) this corresponds to P ∪ [P]. In order to
describe coupling effects between the amplitudes in the EOS
and the amplitudes outside the EOS, the MP2 equations
(Eq. (7)) have to be solved in an extended space, and
[P] ∪ [P] denoted the amplitude orbital space (AOS), where
[P] includes P as well as additional occupied orbitals involved
in the coupling mechanism. As for the [P] space, the practical
determination of [P] is described in Ref. 48.

Equation (5) requires amplitudes and integrals in the
local basis. However, in practice, the solution of the amplitude
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equation in the AOS is simplified by transforming the subset
of localized HF orbitals to a pseudocanonical basis,67 which
is defined by diagonalizing the local Fock matrix blocks
Fij (ij ∈ [P]) and Fab (ab ∈ [P]). The amplitudes are then
constructed directly in a pseudocanonical basis according to

tAB
IJ = −gAIBJ(ϵ A + ϵB − ϵ I − ϵ J)−1, (7)

where I, J (A,B) are occupied (virtual) MO indices in the
pseudocanonical basis, and ϵ I , ϵ J, ϵ A, and ϵB are the diagonal
Fock matrix elements in the pseudocanonical basis. The
amplitudes are later transformed to the local basis where
the energy is evaluated using Eq. (5). This transformation is
necessary since the occupied summation restriction in Eq. (5)
is only defined in the local basis.

The DEC algorithm described above scales quadratically
with system size due to the number of pair calculations
in Eq. (2). However, the pair energies describe dispersion
interactions decaying with the inverse pair distance to the
sixth power. Distant pairs with small energy contributions
may therefore be neglected without affecting the precision of
the total correlation energy, which already contains an error of
size FOT for each atomic fragment. In the simplest approach,
a distance-based cutoff can be used to determine which pairs
to include.48 A more elaborate scheme based on approximate
pair energy contributions will be described in a forthcoming
paper.

The DEC-MP2 algorithm may be summarized as follows:

1. Determine localized occupied and virtual HF molecular
orbitals.

2. For each atomic fragment P, determine the optimized
orbital spaces [P] and [P] (the AOS) as detailed in Ref. 48.
This step also provides all atomic fragment energies EP.
Each fragment calculation is carried out using the following
procedure:
(a) Transform the local HF orbitals of the AOS into a

pseudocanonical basis in order to generate the doubles
amplitudes using Eq. (7).

(b) Transform the integrals and amplitudes back to the
local HF basis and extract their EOS contributions.

(c) Evaluate the fragment energy using Eq. (5).
3. Pair screening: Use pair energy estimates to screen

away pairs with negligible contributions (detailed in a

forthcoming paper) to get a list of the important pair
fragments.

4. For each important pair fragment PQ, calculate ∆EPQ

according to steps 2(a)-2(c) above, where Eq. (6) is used
in step 2(c).

5. Add up the fragment energies to obtain the total DEC-MP2
energy using Eq. (2).

B. The resolution of the identity
within a DEC framework

The resolution of the identity can be expressed
in its standard V approximation5 using the symmetric
decomposition,68

gaibj ≈


αβ

(ai|α)(α|β)−1(β |bj),

gaibj ≈


αβγ

(ai|α)(α|γ)−1/2(γ |β)−1/2(β |bj) =


γ

Cγ
aiC

γ
bj, (8)

where (ai|α) is a 3-center ERI, (α|β) is a 2-center ERI, and
Cγ

ai =


α(ai|α)(α|γ)−1/2. We let {α, β,γ} refer to auxiliary
AO indices, while {µ,ν} are used for standard AO indices.
We can directly apply the DEC-MP2 algorithm summarized
in Section II A to the DEC-RI-MP2 model by calculating
2-electron integrals using Eq. (8).

Algorithm 1 shows in detail how the EOS amplitudes
and EOS integrals entering Eqs. (5) and (6) are determined
in the DEC-RI-MP2 method. Here, the i, j,a,b indices refer
to localized HF orbitals in the EOS, while the I, J, A,B
indices label pseudocanonical orbitals in the AOS. We use
Cµ I (CµA) to denote elements of the transformation matrix
from the AOs to the occupied (virtual) pseudocanonical
orbitals, while UI i (UAa) represents a transformation from the
occupied (virtual) pseudocanonical orbitals to the occupied
(virtual) local orbitals. The cost of the fragment calculation
is determined by the number of occupied MOs in the EOS
(OEOS), occupied MOs in the AOS (OAOS), virtual MOs in
the AOS (VAOS), standard AOs (NAO,AOS), and auxiliary AOs
(Naux,AOS). Note that these dimensions all refer to a fragment
(EOS or AOS subscript), not the full molecular system. The
determination of NAO,AOS and Naux,AOS is discussed below.
The scaling of each step is shown in Algorithm 1.

ALGORITHM 1. DEC-RI-MP2 algorithm for calculating EOS amplitudes tab
ij and EOS integrals gaibj. The

scaling with the fragment size of the time-dominating step is given in parentheses for each term. Bold: Done
by local master using OpenMP parallelization. Normal font: MPI-parallelized across n nodes, where each MPI
process utilizes OpenMP parallelization. The notation is described in the text.

1 Calculate (α |µν) (Naux,AOSN
2
AO,AOS)

2 Calculate (α ||β) (N2
aux,AOS)

3 Construct (α ||β)−
1
2 (N3

aux,AOS)
4 (β |AI)=µCµA

�
νCν I(β |µν)

�
(Naux,AOSN

2
AO,AOSOAOS)

5 Cα
AI =


β(α |β)−
1
2 (β |AI) (N 2

aux,AOSVAOSOAOS)

6 tAB
IJ =


α
Cα

AIC
α
BJ

ϵ I+ϵJ−ϵA−ϵB (Naux,AOSV
2
AOSO

2
AOS)

7 tab
ij =


AUaA

(
BUbB

�
IUiI

�
JUjJt

AB
IJ

��)
(OEOSV

2
AOSO

2
AOS)

8 Cα
ai =


AUaA

�
IUi IC

α
AI

�
(Naux,AOSVAOSOAOS)

9 gaibj=


αC
α
aiC

α
bj (Naux,AOSV

2
AOS)
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The memory requirements of the standard RI-MP2
method are very small, since the method does not require the
storage of the full doubles amplitudes, but only requires the
fitting coefficients (N2

auxVO) for the full molecular system.
However, the DEC-RI-MP2 method additionally requires
a transformation from the pseudocanonical basis to the
local basis. In practice, pseudocanonical amplitudes tAB

IJ are
generated and immediately transformed to the local EOS (first
transformation in step 7 in Algorithm 1), tAB

IJ → tAB
iJ , and the

tAB
iJ amplitudes are stored before they are fully transformed

to the local basis (tAB
iJ → tab

ij ). The memory requirements are
therefore V 2

AOSOAOSOEOS in addition to the N2
aux,AOSVAOSOAOS

requirements for the fitting coefficients. Thus, although the
memory requirements of the DEC-RI-MP2 scheme are slightly
more involved than for the conventional RI-MP2 method, the
storage of doubles amplitudes with four AOS indices (tAB

IJ ) is
avoided in the DEC-RI-MP2 scheme, which also does not use
any I/O. We also note that, since the doubles amplitudes are
stored in the local basis (tab

ij ), it is also possible to construct the
MP2 density, molecular gradient, electrostatic potential, etc.,
within the DEC framework.49,51,69 Once the EOS amplitudes
and EOS integrals have been determined, the actual evaluation
of the fragment energy (Eq. (5) or (6)) is a minor task, which
is not shown in Algorithm 1.

The parallelization of the DEC-RI-MP2 scheme is
discussed in detail in Section IV. For now, we just note
that each fragment calculation is parallelized over n compute
nodes, where one of the nodes is assigned to be the local
master. In Algorithm 1, the steps that are performed only by
the local master are shown in bold, while the steps which
are parallelized across the n nodes using the message passing
interface (MPI) are shown in regular font.

The number of occupied (OAOS) and virtual (VAOS) orbitals
assigned to a fragment is defined by the fragment optimization
procedure.48 To determine the number of AOs in a fragment,
NAO,AOS, we need to consider the expansion of a localized MO
assigned to atomic site P, φPr , in terms of atomic orbitals χµ
and MO coefficients cPµr ,

φPr =


µ

χµcPµr , (9)

where r is a general MO label which may refer to either an
occupied or a virtual orbital. Even though the bulk of the
localized MO φPr is confined to a small volume of space, the
localized MO has small tail coefficients far from P. To reduce
the number of 4-center AO integrals to be determined, we
therefore introduce an approximate MO φ̃Pr ,

φ̃Pr =


µ∈{P}
χµc̃Pµr , (10)

where {P} is the so-called atomic extent (AE) which is a
subset of atomic orbitals close to atomic site P, and the
c̃Pµr coefficients are determined such that φ̃Pr resembles φPr
as much as possible in a least squares sense. The practical
determination of {P} and c̃Pµr is detailed in Ref. 48. The
number of AOs (NAO,AOS) thus corresponds to the number of
atomic basis functions included in {P}.

Concerning the set of auxiliary AOs used in the RI
approximation, we investigate two choices:

A: Include the full auxiliary AO basis set in all fragment
calculations.

B: Include auxiliary AO basis functions on atoms of the
atomic extent (e.g., for atomic fragment P, include
auxiliary AOs on atoms in the {P} space, see Eq. (10)).

Option A is only interesting for analysis purposes, since
it would destroy the linear-scaling of the DEC-RI-MP2
algorithm (Naux,AOS in Algorithm 1 would be the full molecular
system). Option B is the practical choice and is appealing due
to its simplicity and since it ensures a linear-scaling DEC-
RI-MP2 algorithm. Naturally, both options will lead to the
full RI-MP2 result in the limit where the FOT approaches
zero. The approximation associated with option B is expected
to be small, since, for an atomic fragment P, only ERIs gaibj

(i, j ∈ P), where the local virtual orbitals a and b are far
from P, will be poorly described using the RI approximation,
and such integrals have very small energy contributions.
In essence, option B corresponds to a local domain fitting
procedure, and local domain fitting has previously been used
successfully for MP2.12,70,71 Options A and B are compared
in Section III C.

C. DEC-RI-MP2 approximations

In order to investigate the efficiency of the DEC-RI-MP2
model, it is convenient to summarize the approximations
introduced so far:

Approx AOS: The amplitude equations are solved in
the restricted AOS, and the virtual orbital
summations are restricted in Eqs. (5) and (6).

Approx AE: The orbitals in the AOS are spanned by the
restricted set of AOs in the atomic extent.

Approx PAIR: Distant pair interaction energies are ne-
glected.

These approximations are present for all wave function
models within the DEC framework, while the following two
approximations arise from the introduction of the resolution
of the identity:

Approx AAE: The auxiliary AOs are restricted to the atomic
extent (option B).

Approx RI: The RI approximation.

Approx AE, Approx AOS, Approx PAIR, and Approx
AAE are DEC specific, while Approx RI represents the
intrinsic RI error. When the FOT is tightened, the errors
associated with Approx AE, Approx AOS, Approx PAIR,
and Approx AAE all decrease. However, the RI error persists.
Thus, as the FOT approaches zero, the DEC-RI-MP2 energy
approaches the RI-MP2 energy, not the canonical MP2 energy.
In Section III B, we investigate the convergence of the DEC-
RI-MP2 with the FOT and compare the DEC specific errors
to the intrinsic RI error.
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III. NUMERICAL RESULTS

A. Computational details and molecular systems

In order to investigate the performance of the DEC-
RI-MP2 algorithm both in terms of errors in the total
correlation energy and in terms of timings, we have selected a
set of medium to large molecules (see supplementary material
for the molecular geometries72). All calculations have been
performed using Dunning’s correlation consistent cc-pVTZ
basis set73 and the cc-pVTZ-RI auxiliary basis set.23,74,75 The
considered molecular systems are as follows:

(a) Coronene (C24H12): 78 occupied orbitals, 810 virtual
orbitals, 888 atomic basis functions, 2304 auxiliary basis
functions.

(b) Tetrahexacontanoic acid (C64O2H128): 264 occupied
orbitals, 3508 virtual orbitals, 3773 atomic basis functions,
9186 auxiliary basis functions.

(c) Heptapeptide (Asn-Phe-Gly-Ala-Ile-Leu-Ser): 208 occu-
pied orbitals, 2240 virtual orbitals, 2448 atomic basis
functions, 6155 auxiliary basis functions.

(d) Valinomycin (C54H90N6O18): 300 occupied orbitals, 3300
virtual orbitals, 3600 atomic basis functions, 9018
auxiliary basis functions.

These molecules have rather different chemical struc-
tures, including a delocalized aromatic electronic structure
(coronene), a highly one-dimensional molecule (tetrahexa-
contanoic acid), and a more compact structure (valinomycin).
Furthermore, all considered molecules are rather large, since
the DEC-RI-MP2 scheme is only useful for large molecular
systems, as we discuss will in detail in Section III D.

All calculations have been performed using a local version
of the LSD program, and the methods used in this paper
are part of the kernel of the D2016 suite.76,77

B. The DEC correlation energy

In this section, we want to study the effect of the
different approximations (RI and DEC) on the canonical
MP2 correlation energy. We therefore introduce the following
notations to quantify energy errors:

δRI =
�
EDEC−RI−MP2

corr − EDEC−MP2
corr

�
, (11)

δDEC =
�
EDEC−RI−MP2

corr − ERI−MP2
corr

�
, (12)

δDEC-RI =
�
EDEC−RI−MP2

corr − EMP2
corr

�
, (13)

where δRI denote the error associated with the RI
approximation, δDEC the error associated with the DEC
scheme, and δDEC-RI the error associated with both RI and
DEC. We also introduce the DEC recovery of the canonical
RI-MP2 correlation energy,

∆DEC =
EDEC−RI−MP2

corr

ERI−MP2
corr

. (14)

The error associated with both RI and DEC (δDEC-RI) are
only reported for the coronene system as the other systems
were too large to perform a canonical MP2 calculation of
triple zeta quality. Furthermore, the RI errors (δRI) are not
reported for the heptapeptide and the valinomycin systems
(the DEC-MP2 calculations can in principle be performed,
but for these systems they are very expensive for tight FOT
values).

In Tables I–IV, we examine the convergence of the
total correlation energy as the FOT is tightened. As for
the DEC-MP2 scheme, the error δDEC in the total energy
decreases by roughly an order of magnitude when decreasing
the FOT by an order of magnitude, demonstrating that the
combined DEC error associated with Approx AE, Approx
AOS, Approx PAIR, and Approx AAE systematically
decreases with the FOT. Thus, although in principle there
are several approximations in DEC, they are all controlled by
one threshold.

From Table I, we note that the RI error (δRI) of the
DEC-RI-MP2 calculation converges to the error associated
with the RI approximation for the canonical calculations on
coronene (5.55 · 10−4 a.u.) when tightening the FOT. The
same observation can be made for the carbon chain in Table II
even though the exact number could not be calculated. It is
important to realize that at approximately FOT = 10−5 a.u.,
the DEC-RI-MP2 calculation is dominated by the RI error
(Approx RI) and further tightening of the FOT is futile. We
also note that the DEC-RI-MP2 model provides results of
similar accuracy for the different systems under consideration
in Tables I–IV, i.e., independently of the spatial structure (1,
2, or 3-dimensional) and the chemical structure (conjugated
or not conjugated system).

C. Selection of the auxiliary basis
functions (Approx AAE)

Having demonstrated the general convergence of the
DEC-RI-MP2 energy with the FOT, we now examine Approx
AAE in more detail. In Table V, we compare option A (include

TABLE I. Total errors (δDEC, δRI, and δDEC-RI, a.u.) and recovery (∆DEC, %) in the total correlation energy
of the coronene molecule for different values of the FOT (a.u.). Speed up of DEC-RI-MP2 with respect to
canonical RI-MP2 is also reported.

FOT δDEC δRI δDEC-RI ∆DEC Speed up

1.0 ·10−3 7.576 ·10−2 5.255 ·10−4 7.632 ·10−2 98.153 0.127
1.0 ·10−4 6.475 ·10−3 5.598 ·10−4 7.032 ·10−3 99.842 0.045
1.0 ·10−5 4.430 ·10−4 5.703 ·10−4 1.000 ·10−3 99.989 0.029
1.0 ·10−6 2.447 ·10−5 5.555 ·10−4 5.816 ·10−4 99.999 0.023
1.0 ·10−7 8.749 ·10−7 5.555 ·10−4 5.580 ·10−4 100.00 0.022
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TABLE II. Total errors (δDEC and δRI, a.u.) and recovery (∆DEC, %) in the
total correlation energy of the tetrahexacontanoic acid for different values of
the FOT (a.u.). Speed up of DEC-RI-MP2 with respect to canonical RI-MP2
is also reported.

FOT δDEC δRI ∆DEC Speed up

1.0 ·10−3 1.285 ·10−1 1.823 ·10−3 98.986 25.8
5.0 ·10−4 6.492 ·10−2 2.416 ·10−3 99.488 24.8
1.0 ·10−4 1.414 ·10−2 2.066 ·10−3 99.888 17.2
5.0 ·10−5 8.393 ·10−3 1.918 ·10−3 99.934 14.6
1.0 ·10−5 1.821 ·10−3 2.050 ·10−3 99.986 6.7
5.0 ·10−6 8.520 ·10−4 2.051 ·10−3 99.993 3.7

all auxiliary functions) and option B (include auxiliary
functions associated with atomic centers in the atomic extent
{P}) for tetrahexacontanoic acid. The difference between
options A and B (δB−A in Table V) should be compared with
the DEC error for this molecule in Table II. It is clear that the
error related to option B is minuscule compared to the error
associated with the DEC partitioning scheme, and option B
is therefore well-justified. Note that option B is the practical
implementation used for all other DEC-RI-MP2 calculations
reported in this paper.

The numbers in Table V indicate that it is in fact
possible to further reduce the size of the auxiliary space.
For the FOT = 10−5 a.u. calculation, the largest and smallest
fitting domains contained 3197 and 1147 auxiliary functions,
respectively. These fitting domains are quite large compared to
what has typically been used in the literature,12,14,70,71,78,79 and
the δB−A numbers in Table V strongly support the conclusion
that smaller auxiliary domains can be used without affecting
the precision. In the present implementation, we have used
option B due to the simplicity of the approach, but we are
currently investigating alternative choices leading to smaller
auxiliary domains. Possible options include the use of Natural
Auxiliary Functions (NAFs),80 or 3 center integral screening
techniques such as the SQVℓ81 or Löwdin charges.12

D. Performance analysis

The overall goal of DEC is to provide a framework to
calculate energies and properties at the CC level of theory for
molecular systems where a conventional implementation hits
a scaling wall. Furthermore, the DEC scheme is designed to
utilize the thousands of computing cores available on modern
supercomputers. One of the consequences of the massively
parallel character of DEC is a large amount of recalculations,
which makes it vastly inefficient for small molecular systems

TABLE III. Total errors (δDEC, a.u.) and recovery (∆DEC, %) in the total
correlation energy of the heptapeptide for different values of the FOT (a.u.).

FOT δDEC ∆DEC

1.0 ·10−3 1.162 ·10−1 98.944
1.0 ·10−4 1.455 ·10−2 99.868
1.0 ·10−5 1.575 ·10−3 99.986
1.0 ·10−6 1.606 ·10−4 99.999

TABLE IV. Total errors (δDEC, a.u.) and recovery (∆DEC, %) in the total
correlation energy of the valinomycin molecule for different values of the
FOT (a.u.).

FOT δDEC ∆DEC

1.0 ·10−3 2.349 ·10−1 98.512
5.0 ·10−4 1.205 ·10−1 99.237
1.0 ·10−4 3.064 ·10−2 99.806
5.0 ·10−5 1.774 ·10−2 99.888

compared to a conventional implementation. In this section
we analyze the general performance of the DEC-RI-MP2
algorithm and try to give simple rule of thumb for the general
user to choose between DEC or conventional implementations
to treat a given problem. We have therefore reported speed
ups of the DEC-RI-MP2 simulations with respect to the
canonical RI-MP2 calculations for both coronene and the
tetrahexacontanoic acid (see Tables I and II).

The calculations on coronene were performed on the Eos
cluster at Oak Ridge National Laboratory (ORNL).82 The
speed ups given in Table I show that the coronene molecule
is clearly too small to demonstrate the usefulness of the
DEC algorithm, i.e., the crossover between a conventional
implementation and the DEC scheme occurs for a system
that is larger than coronene. Indeed, in the case of a small
molecular system and a tight FOT value, the DEC algorithm is
basically repeating a conventional calculation using (almost)
the full orbital space for each fragment, and consequently no
speed ups are observed in Table I. For coronene, there are 300
fragments if all pair fragments are included. In the limit where
the FOT approaches zero, a DEC calculation would therefore
be 300 times slower than a canonical RI-MP2 calculation.
However, because the fragment calculations are completely
independent, it is always possible to bring down the time to
solution of a DEC calculation by using many nodes.

For the tetrahexacontanoic acid (Table II), the calculations
were performed using our local cluster.83 While using DEC
on the coronene system is clearly unfavorable, the situation is
very different for the highly linear tetrahexacontanoic acid. It
is seen that even without using the massively parallel feature
of DEC (all independent calculations are done one after an
other), the DEC-RI-MP2 simulation provides shorter time to
solution than the standard method for all FOTs in Table II.
We also note that at approximately FOT = 10−5 a.u., the
DEC-RI-MP2 calculation starts to be dominated by the RI
error, and the DEC-RI-MP2 calculation is still 6.7 times faster
than the conventional RI-MP2 calculation.

TABLE V. Comparison of options A and B concerning the choice of auxil-
iary basis functions for tetrahexacontanoic acid using a cc-pVTZ(cc-pVTZ-
RI) basis.

FOT δB−Aa

1.0 ·10−3 4.1 ·10−6

1.0 ·10−4 6.1 ·10−7

1.0 ·10−5 5.3 ·10−8

aDifference in total correlation energy between options A and B.
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FIG. 1. Comparison of the linear-scaling DEC-RI-MP2 method and the N 5

scaling standard canonical RI-MP2 method for a set of alkane chains of
increasing length. The cc-pVTZ(cc-pVTZ-RI) basis was employed.83

In order to further illustrate the crossover between
conventional and DEC implementations as well as to
demonstrate the linear-scaling behavior of the DEC-RI-
MP2 code, we have performed DEC-RI-MP2/cc-pVTZ(cc-
pVTZ-RI) calculations on alkane chains of increasing sizes,
from C16H34 (956 basis functions) to C160H322 (9308 basis
functions). The results are given in Figure 1 for calculations
performed using our local cluster.83 It is seen that the DEC-
RI-MP2 method indeed is scaling linearly with the system
size (N), while the standard RI-MP2 method scales as N5.
Obviously, tightening the FOT increases the prefactor, but
it does not change the overall linear-scaling behavior of the
method. Of course, the linear-scaling behavior emerges quite
early for these highly linear systems, while 3-dimensional
systems would enter the linear-scaling regime for larger
system sizes.

The timings reported in Tables I and II and Figure 1
should guide the general user to choose between the
conventional and DEC methods for RI-MP2 calculations.
For highly linear systems, the DEC algorithm in general
outperforms the conventional implementation. For more
complicated structures, the conventional algorithm is to be
preferred if it is at all feasible. However, when the canonical
implementation hits the scaling wall, the DEC scheme is still
feasible and becomes the method of choice. In particular, if
many compute nodes are available, the DEC algorithm always
provides a very short time to solution.

IV. PARALLELIZATION OF THE DEC SCHEME

In this section, we summarize the DEC parallelization
strategy65 and provide numerical results to investigate the
parallel performance of the DEC-RI-MP2 scheme. As a test
system, we use a cluster of 200 water molecules, (H2O)200,
and the standard AO and auxiliary basis sets, cc-pVTZ and cc-
pVTZ-RI, respectively. The calculations have been performed
using a FOT = 10−4 a.u and the Titan supercomputing system
at ORNL.84 In DEC, the different fragment calculations may
be run in parallel because they are independent of each other.

We refer to this as coarse grained parallelization, while
the parallelization of the individual fragment calculations is
referred to as medium grained parallelization (Algorithm 1).
The coarse grained parallelization is common to all wave
function models (RI-MP2, MP2, CCSD, CCSD(T), . . .), while
the medium grained parallelization is dependent on the model
of choice. At the coarse grained level of parallelization, one
MPI process called the global master dynamically distributes
the fragment jobs to the local masters according to a list where
the computational demands of each fragment is prioritized
(largest fragments are calculated first). At the medium grained
level, each local master has a set of associated local slaves,
which all together define a fragment slot. Each slot carries
out the fragment calculation and sends back the fragment
energy to the global master who adds up the fragment
energy contributions. Since the fragment calculations are
of very different size, we have chosen an approach where
the slots divide dynamically to ensure a good medium
grained parallelization. The medium grained parallelization
is investigated in Section IV A, while the coarse grained
parallel performance is discussed in Section IV B.

A. Medium grained parallelization

The medium grained parallelization of the DEC-
RI-MP2 method is very similar to the parallelization of the
standard canonical RI-MP2 calculation and as such several
options are possible. Katouda and Nakajima10 performed
the MPI work distribution based on the set of virtual
orbitals, while in a previous paper,9 the MPI parallelization
was based on the set of occupied orbitals. Hättig et al.85

concluded that the time-determining steps of RI-MP2 was
most efficiently parallelized over the pairs of occupied orbital
indices, because a parallelization over auxiliary basis functions
would require the communication of 4-index MO integrals
and thus require transfer rates which can only be reached with
high performance networks. However, in connection with the
DEC-RI-MP2 code, the 4-index MO integrals and amplitudes
that must be communicated are the ones residing in the
small EOS space. The medium grained parallelization of the
DEC-RI-MP2 model was therefore chosen to be based on a
parallelization over auxiliary basis functions. Each node in
the slot is thus simply assigned a subset of the auxiliary basis
functions in each of the MPI-parallelized steps of Algorithm 1.

The individual fragment calculations can have signifi-
cantly different sizes depending on the chemical environment.
For example, the smallest pair fragment in the water cluster
calculation (FOT = 10−4 a.u.), contained 17 occupied MOs,
222 virtual MOs, and 416 AOs, while the biggest fragment
contained 73 occupied MOs, 902 virtual MOs, and 1928 AOs.
The computational cost of the individual fragment calculations
is the standard O(N5

frag) scaling, where Nfrag is a measure of the
fragment size (see Algorithm 1). These differences in fragment
sizes thus lead to huge differences in terms of computational
requirements.

To minimize the time-to-solution for the total calculation,
it is important to know how many nodes can be used
efficiently for a given fragment at the medium grained level
of parallelization. In order to investigate the medium grained
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FIG. 2. Medium grained scaling: Speed up for a pair fragment consisting
of 38 occupied orbitals, 350 virtual orbitals, 690 basis functions, and 1923
auxiliary basis functions in a DEC-RI-MP2/cc-pVTZ(cc-pVTZ-RI) energy
calculation on a (H2O)200 cluster using FOT= 10−4 a.u. (The blue line repre-
sents ideal scaling and the relative speed up (in %) compared to ideal behavior
are given for each point.)

parallel performance, we present relative timings for two
fragments of very different sizes. In Figure 2, the relative
timings are given for a small pair fragment (with 38 occupied
orbitals, 350 virtual orbitals, 690 basis functions, and 1923
auxiliary basis functions) of the (H2O)200 calculation, while
Figure 3 shows the relative timings for a large pair fragment
with 69 occupied orbitals, 723 virtual orbitals, 1397 basis
functions, and 3999 auxiliary basis functions.

For the small fragment, the performance is quickly
saturated and for six nodes, we obtain 78.3% of the idealized
speed up. For the large fragment, the parallel performance
is superlinear with the number of nodes. The reason for
this superlinear behaviour is that the fitting coefficients Cγ

bj
have been distributed among the nodes, and this reduces
the datasize and improves cache memory performance. The

FIG. 3. Medium grained scaling: Speed up for a pair fragment consisting of
69 occupied orbitals, 723 virtual orbitals, 1397 basis functions, and 3999 aux-
iliary basis functions in a DEC-RI-MP2/cc-pVTZ(cc-pVTZ-RI) calculation
on a (H2O)200 cluster using FOT= 10−4 a.u. (The blue line represents ideal
scaling and the relative times (in %) compared to ideal behavior are given for
each point.)

smaller memory requirements on the individual node also
allow for more efficient AO to MO transformations.

The fragment size, which can be quantified in terms
of Naux,AOS, OAOS, and VAOS, thus determines the efficiency
of the parallelization in Algorithm 1. The most expensive
computational step (step 6 of the Algorithm 1) of a
fragment calculation scales as Naux,AOSV 2

AOSO2
AOS, while, in

the most expensive communication step, the 3 center ERIs
(α|AI) of size Naux,AOSVAOSOAOS are communicated among
n nodes. We therefore require that the ratio between the
computationally most expensive step and the most expensive
communication step is large. Thus, roughly speaking, the
larger Naux,AOSV 2

AOSO2
AOS/(Naux,AOSVAOSOAOS) = OAOSVAOS is,

the more nodes can efficiently be used in Algorithm 1. In
practice, we use the following condition to determine whether
a slot containing n nodes should divide or not:

Divide slot if: n > OAOSVAOS/X. (15)

The large number of fragments that must be calculated in a
DEC calculation allows us to use a conservative number of
nodes for each fragment, and empirical investigations have
established that X = 8000 is a reasonable value. For example,
if a slot of 4 nodes receives a fragment job where Eq. (15)
is satisfied, the slot would divide into two new slots each
containing two nodes. One of these slots would calculate the
fragment job in question, while the other slot would receive
another small fragment job from the global master.

B. Loss and coarse grained scaling

Concerning the parallel performance of the DEC-RI-
MP2 scheme as a whole, we distinguish between local
and global loss of efficiency.65 The local loss occurs in the
individual fragment calculation at the medium grained level of
parallelization and was analyzed in Section IV A. Local loss
is present due to nonideal load balancing, communication,
and the non-parallelized steps in Algorithm 1. Global loss
refers to the coarse grained parallelization level and occurs
when all jobs have been distributed by the global master and
some of the nodes wait for the remaining jobs to finish. It
may in principle also occur if many local masters are trying
to send/receive fragment job information to/from the global
master at the same time, but we have not observed this to
be a practical problem. In Figure 4, we investigate the coarse
grained parallel performance for a calculation on the (H2O)200
cluster using between 400 and 1600 nodes. The calculation
using 400 nodes is taken as reference and corresponds to a
time-to-solution of 8 h and 14 min. The coarse grained scaling
behavior for the DEC-RI-MP2 code is close to ideal in the
considered range, although it slowly starts to deteriorate for
1600 nodes for reasons detailed below.

Equation (15) was used to define the fragment slot sizes
for the calculations in Figure 4, and some local loss is therefore
expected. Global loss is present for any DEC calculation using
more than one fragment slot. The local and global losses
for the calculations in Figure 4 are compared in Table VI.
The global loss is increasing with the number of nodes,
reflecting the decrease in relative speed up in Figure 4, where
the calculation with 400 nodes was used as reference. This
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FIG. 4. Coarse grained scaling: Speed up for DEC-RI-MP2/cc-pVTZ(cc-
pVTZ-RI) calculations on (H2O)200 cluster using FOT= 10−4 a.u. compared
to the reference calculation using 400 nodes. The blue line represents ideal
scaling and the relative times (in %) compared to ideal behavior are given for
each point (relative to reference calculation).

TABLE VI. Local and global loss for DEC-RI-MP2/cc-pVTZ(cc-pVTZ-RI)
calculations on (H2O)200 cluster using FOT= 10−4 a.u.

Number of nodes: 400 800 1200 1600

Local loss (%) 11.9 11.3 10.3 9.66
Global loss (%) 2.14 4.13 6.91 10.5

increase in global loss happens because, as the number of
nodes is increased, more nodes are waiting for the last few
fragment jobs to finish at the end of the calculation. The
local loss from Table VI is roughly constant with the number
of nodes (≃10%), which means that the dividing procedure
relying on Eq. (15) is working properly.

The current DEC-RI-MP2 parallelization scheme can be
further improved, and work is being done in that direction.
At present, Eq. (15) has been defined in order to use as many
nodes as possible for a given fragment calculation without
having a non-beneficial scaling behaviour (see Fig. 2) and
keeping the local loss as low as possible. However, if a huge
number of nodes is available, it may be beneficial to use more
nodes for each fragment, which would reduce the global loss
at the expense of increasing the local loss. An optimal balance
between local and global losses to minimize the total loss
would require a more advanced criterion for determining the
slot sizes than the one in Eq. (15), or, at least X in Eq. (15)
should be chosen in a more sophisticated manner than simply
using a fixed predefined value. Nevertheless, the current status
of the code allows us to efficiently exploit large supercomputer
architectures and perform large DEC-RI-MP2 calculations
with a short time-to-solution and low computational loss.

V. SUMMARY AND OUTLOOK

We have presented the linear-scaling and massively
parallel DEC-RI-MP2 method, which shows substantial speed
up compared to the DEC-MP2 algorithm. The method can be
applied to systems that are much larger than the ones that

can be treated with the RI-MP2 method with small and
controllable errors. The massively parallel character of the
algorithm makes it particularly well suited for very large
computer architectures for which several thousand nodes can
be used efficiently, resulting in a very short time-to-solution.
The DEC error control ensures that the standard RI-MP2
energy can be obtained to the desired precision.

The results indicate that the size of the auxiliary basis
set can be further reduced, and work in this direction is
ongoing. We also currently investigate the possibility of
introducing a Laplace transformation of the orbital energy
denominators16,17,31,32,86 to further reduce the computational
cost of the DEC-RI-MP2 method. Current and future computer
architectures utilize graphical processing units (GPUs), and
the DEC-RI-MP2 scheme is ideally suited to exploit such
hardware as has already been done for standard RI-MP2.15,87

It is clear from the last two points that the DEC-RI-MP2
performance may be further improved — both concerning the
algorithm itself and adaptation to modern computer hardware.
It is therefore our intention to further develop DEC-RI-
MP2 algorithm such that it will be able to offer a tractable
alternative to density functional theory (DFT) calculations of
molecular energies. Finally, we note that molecular gradient
has already been implemented for the DEC-MP2 model.51

These developments are currently being adapted to the DEC-
RI-MP2 model with the goal of extending the DEC-RI-MP2
model to be able to calculate molecular properties.
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ABSTRACT: We propose a reformulation of the traditional
(T) triples correction to the coupled cluster singles and
doubles (CCSD) energy in terms of local Hartree−Fock (HF)
orbitals such that its structural form aligns with our recently
developed linear-scaling divide−expand−consolidate (DEC)
coupled cluster family of local correlation methods. In a DEC-
CCSD(T) calculation, a basis of local occupied and virtual HF
orbitals is used to partition the correlated calculation on the
full system into a number of independent atomic fragment and
pair fragment calculations, each performed within a truncated
set of the complete orbital space. In return, this leads to a
massively parallel algorithm for the evaluation of the DEC-
CCSD(T) correlation energy, which formally scales linearly
with the size of the full system and has a tunable precision with respect to a conventional CCSD(T) calculation via a single
energy-based input threshold. The theoretical developments are supported by proof of concept DEC-CCSD(T) calculations on a
series of medium-sized molecular systems.

1. INTRODUCTION

In the quest for chemical accuracy in ab initio electronic
structure calculations, the coupled cluster (CC) singles and
doubles model1 (CCSD) augmented by a perturbative
treatment of triple excitations2 (CCSD(T)) has proven itself
the gold standard. However, despite the notable success of the
CCSD(T) model in benchmarking electronic energies and
other molecular properties for small molecular systems, its
seventh-power scaling with system size remains a severe
impediment of the model, generally preventing it from large-
scale applications and hence from becoming beneficial beyond
the niche of modest-sized molecular systems. In standard
implementations, the scaling wall of the CCSD(T) model arises
because the energy correction is expressed in a basis of highly
nonlocal canonical Hartree−Fock (HF) molecular orbitals
(MOs), making a local description of electron correlation
effects unattainable.
Throughout the years, elaborate attempts have been made at

pushing the limits for the CCSD(T) model by devising
massively parallel implementations of the standard canonical
formulation.3−11 However, it is evident that such attempts
cannot significantly extend the application range of the model
as the inherent scaling wall of the model is not overcome. If
large molecular systems are to be addressed by the CCSD(T)
model, the underlying algorithm is bound to be reformulated
such that its implementation becomes not only massively
parallel but also linearly scaling. Furthermore, if this alternative
algorithm in itself is to be successful as a tool within high-

accuracy ab initio quantum chemistry, it is imperative that it
possesses a strict error control through the use of a single
parameter that directly identifies the precision of the calculation
as compared to a standard calculation.
To accommodate the preceding requirements, a plethora of

local correlation CCSD(T) methods have been introduced,
many of which reduce the computational scaling to one that
depends linearly on system size. The first successful of these
was the local CCSD(T) method developed by Schütz and
Werner,12 and since then the CCSD(T) model has been
implemented within various local correlation schemes such as
the incremental scheme,13 the divide-and-conquer scheme,14

the cluster-in-molecule scheme,15,16 and most recently in terms
of orbital-specific virtual orbitals17 as well as pair and triples
natural orbitals.18 Common for all of these methods is the
introduction of a set of parameters which regulate the overall
accuracy of the calculation as compared to a conventional
calculation. However, none of the methods have been designed
to determine optimal local orbital spaces in an automated
fashion based on a single energy criterion provided by the end
user. In the present work, we propose a novel implementation
of the CCSD(T) model, which has an error in the final energy
that is indeed adjusted by the turn of a single knob, while at the
same time being both linearly scaling and massively parallel.
These advances are made possible through a reformulation of
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the (T) correction to the CCSD energy such that its expression
in terms of localized orbitals aligns with our recently developed
divide−expand−consolidate (DEC) coupled cluster frame-
work.19−23

In a DEC-CC calculation, the inherent locality of the
electron correlation problem is efficiently exploited in order to
express the correlated wave function calculation on the full
molecular system in terms of numerous small and independent
fragment calculations that each uses a subset of the total orbital
space. Importantly, the local orbital spaces used in the
individual fragment calculations are determined in a black-box
manner during the calculation to ensure that the calculated final
energy is determined to within a predefined precision
compared to a conventional calculation. An important
prerequisite for the proposed DEC-CCSD(T) modelas for
any DEC-CC modelis our recently developed strategy for
generating a set of local orthogonal orbitals for both the
occupied and virtual orbital spaces,24 which allows us to
describe local electron correlation effects without invoking, e.g.,
a set of linearly dependent nonorthogonal projected atomic
orbitals.
The alternative formulation of the (T) triples energy

correction used herein, which forms the basis for the DEC-
CCSD(T) method, has a computational cost that is twice that
of the standard expression. However, in contrast to the one
conventionally used in standard implementations, which is
restricted to the canonical HF basis, our alternative formulation
may be expressed in any basis of optimized HF orbitals. As a
consequence, the (T) correction can be expressed in a basis of
localized orbitals, making it possible to take advantage of the
locality of the triples amplitudes and, in return, obtain a
reduced overall computational scaling of the energy correction.
In section 2, the conventional and alternative formulations of

the (T) correction are compared to one another in terms of
computational cost and the ability to be expressed in various
bases of optimized HF orbitals. In section 3, we show how the
coupling of the alternative expression for the (T) correction to
the DEC scheme is made for a set of local HF orbitals, while
numerical proof of concept DEC-CCSD(T) results are
presented in section 4. Finally, section 5 gives some conclusive
remarks.

2. CCSD(T) CORRELATION ENERGY

In a basis of spatial (spin-free) HF orbitals, the total CCSD
energy for a closed-shell system is given as

= +E E ECCSD
HF CCSD

(2.0.1)

In eq 2.0.1, EHF is the HF energy and ECCSD the CCSD
correlation energy, which reads25

∑ ∑= +E t t t L( )
ab ij

ij
ab

i
a
j
b

iajb
CCSD

(2.0.2)

where {ti
a} and {tij

ab} are the CCSD singles and doubles
amplitudes, respectively, and Liajb = 2giajb − gibja is an
antisymmetrized two-electron integral written in Mulliken
notation. In the following, the indices {i,j,k,l,m} and
{a,b,c,d,e} will denote occupied and virtual HF orbitals,
respectively.
The CCSD(T) energy is defined as2

= + +E E E ECCSD(T)
HF CCSD (T)

(2.0.3)

where E(T) is the so-called (T) perturbative correction to the
CCSD energy for the effect of triple excitations. The structure
of E(T) is defined by two energy contributions rationalized from
many-body perturbation theory26 (MBPT): E[4], a fourth-order
term involving CCSD doubles amplitudes, and E[5], a fifth-
order term involving CCSD singles amplitudes

= +E E E(T) [4] [5] (2.0.4)

In a basis of canonical HF spatial orbitals, the expressions for
the fourth- and fifth-order contributions may be derived from
MBPT as27

∑ ∑
∑ ∑

ε

ε

= ̃

= ̃

E t t

E z t

(2.0.5a)

(2.0.5b)

abc ijk
ijk
abc

ijk
abc

ijk
abc

abc ijk
ijk
abc

ijk
abc

ijk
abc

[4]

[5]

In eqs 2.0.5, the triples amplitudes {tijk
abc}are given as

ε
= −

∑ − ∑
t P

t g t g
ijk
abc

ijk
abc d ij

ad
ckbd l il

ab
cklj

ijk
abc

(2.0.6)

where εijk
abc denotes the orbital energy difference between the

virtual and occupied orbitals of the excitation

ε ε ε ε ε ε ε= + + − + +( )ijk
abc

a b c i j k (2.0.7)

and Pijk
abc is a symmetrization operator

= + + + + +P x x x x x x xijk
abc

ijk
abc

ijk
abc

ikj
acb

jik
bac

jki
bca

kij
cab

kji
cba

(2.0.8)

The zijk
abc coefficients in eq 2.0.5b are given as

ε
=

− + +
z

t g t g t g( )
ijk
abc i

a
jbkc j

b
iakc k

c
iajb

ijk
abc

(2.0.9)

and the tilde notation on an arbitrary six-index quantity xĩjk
abc in

eq 2.0.5 is defined as

̃ = − +⎜ ⎟⎛
⎝

⎞
⎠x x x x2

2
3

1
3ijk

abc
ijk
abc

ijk
acb

ijk
bca

(2.0.10)

The expressions for the fourth- and fifth-order contributions in
eqs 2.0.5 both contain orbital energy differences, and the
evaluation of the (T) energy correction by this conventional
formulation will thus be practically restricted to a basis of
canonical HF orbitals. If, on the other hand, we were to express
the correction in a more general, optimized HF basis (e.g., in
terms of localized HF orbitals), the equation for the triples
amplitudes in eq 2.0.6 would read

∑ ∑
∑ ∑

+ + − + +

= − −

t F t F t F t F t F t F

P t g t g

( ) ( )

( )

e
ijk
ebc

ae ijk
aec

be ijk
abe

ce
m

mjk
abc

mi imk
abc

mj ijm
abc

mk

ijk
abc

d
ij
ad

ckbd
l

il
ab

cklj
(2.0.11)

Since eq 2.0.11 is expressed in terms of off-diagonal elements of
the Fock matrix, which become nonzero in the local HF basis,28

the total (T) correction would have to be evaluated by means
of an expensive iterative scheme, thereby drastically limiting the
application range of the CCSD(T) model.
Alternatively, the two correction terms in eq 2.0.4 may be

derived from Lagrangian-based CC perturbation theory for a
HF reference state25,29 and expressed as
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∑ ∑
∑ ∑

= −

=

E t t T

E t T

2 (2 ) (2.0.12a)

2 (2.0.12b)
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[4]
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In eqs 2.0.12, the fourth- and fifth-order contributions to the
(T) correction are formulated in terms of the Tij

ab and Ti
a

intermediates, respectively

∑ ∑
∑ ∑

∑ ∑

= −
− −

= −

T t L t g

t L t g

T t t L
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(2.0.13a)
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cd kl
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Comparing the evaluation of E(T) from eqs 2.0.5 and 2.0.12/
2.0.13, we note that both expressions contain the triples
amplitudes of eq 2.0.6, the generation of which scale as o3v4

(where o and v denote the number of occupied and virtual
orbitals, respectively). The evaluation of the Tij

ab intermediates
in eq 2.0.13a contains an additional o3v4 scaling term, while the
conventional expression in eq 2.0.5a contains no such term
since each triples amplitude is immediately contracted with
either itself or a z coefficient in an o3v3 step. As mentioned
earlier, the contractions in eqs 2.0.5 are limited to the canonical
HF basis. Thus, as the local nature of the triples amplitudes
cannot be explored within this highly nonlocal basis, and the
use of any other basis but that formed by the canonical HF
orbitals will increase the computational cost, locality consid-
erations cannot be used to reduce the overall computational
scaling of the (T) energy correction whenever the formulations
in eqs 2.0.5 are used. On the other hand, the alternative
expressions in eqs 2.0.12 are valid within any basis of optimized
HF orbitals, be that a canonical or a local basis. Since the
intermediates in eqs 2.0.13 are constructed from triples
amplitudes and MO integrals only, it is possible to take
advantage of the locality of these two quantities when
evaluating {Tij

ab,Ti
a} and, in return, E(T) in a local basis. As

will be shown in section 3.2, eqs 2.0.12 and 2.0.13 thus provide
a pathway toward a reduction of the overall computational
scaling of the (T) energy correction.
In the present work, we will use the DEC-CC framework for

determining the Ti
a and Tij

ab intermediates in a basis of local HF
orbitals. In practice, the intermediates in a DEC-CCSD(T)
calculation will be determined from individual CCSD(T)
calculations within local atomic fragment and pair fragment
orbital spaces in analogy with the evaluation of CCSD singles
and doubles amplitudes in the DEC-CCSD model.19,20 As we
will demonstrate in sections 3 and 4, the alternative expressions
for the (T) energy correction in eqs 2.0.12 facilitate a reduction
in computational scaling of the ECCSD(T) energy to a linear
dependence on system size, while retaining control of the error
introduced as compared to a conventional CCSD(T)
calculation.

3. DEC PARTITIONING OF THE CCSD AND CCSD(T)
CORRELATION ENERGIES

To understand the similarities and differences between the
DEC evaluation of the CCSD energy and the (T) energy
correction, the foundation for both DEC formulations will be
discussed next. In section 3.1, we give formally exact

expressions for both ECCSD and E(T) in terms of DEC atomic
fragment and pair interaction energies, while section 3.2 is
devoted to the actual approximate evaluation of these.

3.1. Formulation in Terms of Atomic Fragment and
Pair Interaction Energies. In the DEC-CC framework,19−23

we assign local HF orbitals to atomic sites P, Q, R, S, ... and
each atomic site P thus gets assigned a set of local occupied, P,
and virtual, P̅, HF orbitals. Reformulating the CCSD correlation
energy in terms of summations over atomic sites and pair sites,
eq 2.0.2 reads19

∑ ∑= + Δ
<

E E E[ ]
P

P
Q P

PQ
CCSD CCSD CCSD

(3.1.1)

where the atomic fragment energy, EP
CCSD, and the pair

interaction energy, ΔEPQCCSD, are given as
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CCSD

In eqs 3.1.1 and 3.1.2, the CCSD correlation energy is written
in such a way that the summations over the two occupied
orbitals, {i,j}, in eq 2.0.2 are replaced by summations over
atomic sites P and pair sites P,Q as well as summations over
orbitals {i,j} assigned to the respective atomic sites.
Since the expression for the (T) correction in eqs 2.0.12

contains similar summations over occupied and virtual orbitals,
we may likewise substitute these by summations over atomic
sites P and pair sites P,Q as in eq 3.1.1

∑ ∑= + Δ
<

E E E[ ]
P

P
Q P

PQ
(T) (T) (T)

(3.1.3)

where the triples atomic fragment energy, EP
(T), and triples pair

interaction energy, ΔEPQ(T), are given as

= +
Δ = Δ + Δ
E E E

E E E

(3.1.4a)

(3.1.4b)
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The CCSD(T) fourth-order terms become
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while the fifth-order terms become

∑ ∑
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=

Δ = +
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E t T
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with the Tij
ab and Ti

a intermediates given in eqs 2.0.13.
We note how the fourth-order term in eqs 3.1.5 is partitioned

in the same way as ECCSD in eq 3.1.2; that is, the summations
over occupied orbitals are replaced by summations over the
atomic sites and pair sites to which the local HF orbitals have
been assigned. For the fifth-order term in eqs 3.1.6, however,
we have chosen a partitioning in which both single excitation
indices refer to the same atomic site for the atomic fragments,
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while for the pair interaction energies, the indices are assigned
to different atomic sites.
3.2. Evaluation of Atomic Fragment and Pair

Interaction Energies. By replacing the summations over
orbitals in ECCSD and E(T) by summations over atomic sites and
pair sites as well as orbitals assigned to these sites in eqs 3.1.1
and 3.1.3, no approximations are introduced and no reductions
will be obtained with respect to computational requirements.
On the other hand, if restrictions can be made in the
summations over the space of virtual orbitals in the atomic
fragment and pair interaction calculations without compromis-
ing the overall accuracy of the calculation, then ECCSD and E(T)

may be calculated using an algorithm that scales quadratically
with system size. Furthermore, as we will see, many pair
contributions may be neglected without compromising the
precision of the calculated correlation energy, ultimately leading
to a linear-scaling algorithm for the evaluation of the DEC-
CCSD(T) energy.
We initially consider ECCSD in eqs 3.1.2 and assume it is

expressed in a basis of local HF orbitals. The atomic fragment
energy, EP

CCSD, in eq 3.1.2a contains the integrals Liajb where
both occupied indices {i,j} refer to local orbitals assigned to
atomic site P. These integrals will be nonvanishing only if the
virtual indices {a,b} ∈ [P̅], where the space [P̅] denotes the
virtual HF orbital space that is spatially local to P (including P̅);
see Figure 1. For the pair interaction energy in eq 3.1.2b, the
summations over the virtual orbital space may be restricted in a
similar manner using unions of the atomic fragment orbital
spaces for the constituent atomic sites, resulting in the

following DEC-CCSD atomic fragment and pair interaction
energies20

∑ ∑
∑ ∑ ∑ ∑ ∑

= +

Δ = + +
∈ ∈

∈ ∪ ∈ ∈ ∈ ∈

E t t t L

E t t t L

( ) (3.2.1a)

( )( ) (3.2.1b)

P
ab P ij P

ij
ab

i
a
j
b

iajb

PQ
ab P Q i P j Q i Q j P

ij
ab

i
a
j
b

iajb

CCSD

[ ]

CCSD

[ ] [ ]

In order to accurately determine the CCSD amplitudes in eq
3.2.1a, it is imperative that certain coupling effects to
amplitudes outside the P ∪ [P̅] space are described. As
elaborated upon in ref 20, most of these coupling effects arise
from nonvanishing charge distributions in two-electron
integrals in addition to the distance decay of the Fock matrix.
As a result of these additional effects, the amplitudes of eq
3.2.1a have to be allowed to couple to, e.g., amplitudes tkl

ab for
which {k,l} ∈ [P], where [P] denotes the set of occupied
orbitals that are spatially local to the atomic site P (including

P); see Figure 1. In practice, the DEC-CCSD atomic fragment
energy, EP

CCSD, is thus determined by (i) solving the CCSD
amplitude equations in the truncated [P] ∪ [P̅] space and (ii)
extracting the amplitudes of the P ∪ [P̅] space that are needed
for evaluating EP

CCSD using eq 3.2.1a. Similarly, pair fragment
energies are determined using unions of spaces in accordance
with eq 3.2.1b. The [P] and [P̅] spaces are determined
dynamically in a black-box manner during the calculation to
ensure that the resulting error in the atomic fragment energy,
EP
CCSD, is below the so-called fragment optimization threshold

(FOT). This procedure will thus account for the coupling
effects mentioned earlier. The practical implementation of the
fragment optimization procedure is described in ref 20.
Turning our attention to the (T) correction, the orbital

spaces entering the expressions for the fourth-order DEC-
CCSD(T) atomic fragment and pair interaction energies in eqs
3.1.5 may be truncated in a similar fashion
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while the expressions for the fifth-order energies in eqs 3.1.6
remain unchanged. In practice, the actual spaces required for
the accurate evaluation of the (T) correction will be
constrained to the truncated [P] ∪ [P̅] spaces used in the
preceding calculation of the CCSD correlation energy due to
two primary reasons. First, as the fourth- and fifth-order
contributions to the (T) correction are constructed from
CCSD singles and/or doubles amplitudes, these will only be
satisfactorily described within truncated fragment spaces
suitable for the CCSD model. Second, the total (T) correction
is known from the literature to be roughly an order of
magnitude smaller than the CCSD correlation energy,25 and
the errors introduced from reusing the CCSD fragment spaces
are thus expected to be minor compared to the intrinsic FOT
error. As a result, we will refrain from attempting to improve
upon the underlying [P] ∪ [P̅] spaces obtained for the CCSD
model when evaluating the (T) correction. Furthermore, we
will also use union spaces in the calculation of (T) pair
interaction energies. Both of these assumptions will be
numerically justified from the DEC-CCSD(T) results in section
4.
In ref 21, it was illustrated how the dominating contributions

to the CCSD pair interaction energies in eq 3.2.1b, that is,
those that arise from the CCSD doubles amplitudes, decay
asymptotically as rPQ

−6 (where rPQ is the interatomic distance
between atomic sites P and Q), thereby exhibiting a decay rate
in accordance with that of regular dispersion energies. In short,
the origin of this decay rate may be traced back to the fact that
both the CCSD doubles amplitudes and the integrals entering
eq 3.2.1b decay as rPQ

−3, whenever i ∈ P and j ∈ Q. For this
reason, we may neglect pair interaction energies beyond a
certain interatomic distance, again without compromising the
precision of the total correlation energy. Neglecting contribu-
tions to ECCSD from distant pairs thus reduces the total scaling
into one that formally depends only linearly on the size of the
system.
For the fourth- and fifth-order (T) pair interaction energies

in eqs 3.2.2b and 3.1.6b, respectively, we initially note how the
fifth-order contributions will typically be an order of magnitude
smaller than the corresponding fourth-order contributions.25

Figure 1. Different orbital spaces for a given atomic fragment P. Each
box denotes a set of occupied or virtual orbitals assigned to an atomic
site. The CCSD amplitude equations are solved in the [P] ∪ [P̅] space,
and the CCSD atomic fragment energy is evaluated in the P ∪ [P̅]
space.
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For this reason, the actual (T) correction for a pair at a large
interatomic separation will be determined almost exclusively by
the dominant fourth-order contributions, and when analyzing
the distance decay of the (T) pair interaction energies, we may
limit our analysis to these. In order to conduct a similar analysis
for the (T) pair interaction energies as the one done for the
CCSD counterparts, it is instructive to turn to an alternative
formulation of the fourth-order contribution. From coupled
cluster perturbation theory,25,29 this contribution may be
written in terms of the Møller−Plesset fluctuation potential,
Φ̂, as

= ⟨ | Φ̂ ̃ | ⟩E THF [ , ] HF[4]
2
[3]

(3.2.3)

where ̃T 2
[3] = ∑μ2 tμ̃2

[3] τμ̂2 is a double excitation operator built
from the following third-order doubles amplitudes

ε μ̃ = − ⟨ | Φ̂ | ⟩μ μ
−t T[ , ] HF[3] 1

2 32 2 (3.2.4)

In eq 3.2.4, εμ2 is the orbital energy difference between the
virtual and occupied orbitals of double excitation μ2 (cf. eq
2.0.7), while T3 is a triple excitation operator built from the
amplitudes in eq 2.0.6.
Writing out the fourth-order contribution to the (T)

correction in eq 3.2.3, we arrive at the following expression

∑ ∑= ̃E t L
ab ij

ij
ab

iajb
[4] ,[3]

(3.2.5)

Comparing eq 3.2.5 to the corresponding expression for the
doubles contribution to the CCSD energy in eq 2.0.2, we note
how these greatly resemble one another. Since the third-order
doubles amplitudes in eq 3.2.4 represent the lowest-order
relaxation contribution from triple excitations to the doubles
amplitudes in the coupled cluster singles, doubles, and triples
model30 (CCSDT), which decay with the interatomic distance
between atomic sites P and Q in the same way as the CCSD
doubles amplitudes, i.e., as rPQ

−3, the fourth-order contribution to
the (T) correction, and thus the total (T) correction, will decay
as rPQ

−6. For this reason, we may neglect contributions to E(T)

from distant pairs following the same line of arguments that led
to a reduction in the computational scaling of the CCSD
energy and, in return, obtain an algorithm for the evaluation of
the CCSD(T) energy that scales only linearly with the size of
the system.
In outlining the final DEC-CCSD(T) algorithm, we note that

two levels of approximations have been introduced for the
fourth-order contributions in eqs 3.2.2 compared to the exact
expressions in eq 2.0.12a, while only one of these have been
introduced for the fifth-order contributions in eqs 3.1.6
compared to eq 2.0.12b. For the fourth-order contributions,
the summations over the virtual space have been truncated
(approximation i), and the CCSD amplitudes tij

ab as well as the
Tij
ab intermediates have been determined within a truncated set

of localized HF orbitals (approximation ii). For example, the
[P] and [P̅] spaces have been used for atomic fragment P (see
Figure 1). For the fifth-order contributions, only approximation
ii has been invoked; i.e., truncated spaces have been used in the
determination of the CCSD singles amplitudes ti

a and the Ti
a

intermediates.
The DEC-CCSD(T) algorithm can now be summarized as

follows:
(i) Determine localized occupied and virtual HF MOs.

(ii) For each atomic site P, determine the optimized orbital
spaces [P] and [P̅] as detailed in ref 20.
(iii) Solve the CCSD amplitude equations in the [P] ∪ [P̅]

space and evaluate the CCSD atomic fragment energy, EP
CCSD,

using eq 3.2.1a.
(iv) Transform the local HF orbitals of the [P] ∪ [P̅] space

into a pseudocanonical basis in order to generate triples
amplitudes on the fly using eq 2.0.6 (thus avoiding their
storage) and evaluate the Tij

ab and Ti
a intermediates (eqs 2.0.13)

in this basis.
(v) Transform Tij

ab and Ti
a back into the local basis and

evaluate EP
(T) in this basis using eqs 3.2.2a and 3.1.6a, recalling

that the contractions between cluster amplitudes and
intermediates are limited to the restricted sets of local orbitals
i,j ∈ P and a,b ∈ [P̅].
(vi) Repeat steps iii−v for the pair fragments PQ using

unions of atomic fragment orbital spaces; see eqs 3.2.1b, 3.2.2b,
and 3.1.6b; pair fragments with large interatomic distances
(small energy contributions) may be neglected.
(vii) Add up the CCSD and (T) atomic fragment and pair

interaction energies to get the total DEC-CCSD(T) energy
using eqs 3.1.1 and 3.1.3.
Finally, we stress how the intermediate transformations to

and from a pseudocanonical fragment basis are collectively
nothing but a computationally efficient way of evaluating the
(T) correction in the local HF basis. By solving the equations
for the Tij

ab and Ti
a intermediates in a diagonal rather than a

local basis, we are capable of generating individual triples
amplitudes on demand, thereby circumventing the physical
storage of the complete six-dimensional tensor of triples
amplitudes. The actual summations over the occupied space in
eqs 3.2.2 and 3.1.6, however, must be restricted to only those
local orbitals that belong to the P and Q spaces, which is why
we subsequently need to back-transform Tij

ab and Ti
a to the

original local basis.

4. NUMERICAL RESULTS
In the present section, we demonstrate how the DEC-
CCSD(T) modelvia a single input parameter (the FOT)
allows for error control and systematic convergence toward
results obtained with the CCSD(T) model in its conventional
canonical formulation. Proof of concept investigations are
performed on a set of medium-sized molecules for which the
conventional CCSD(T) model can be applied for a direct
comparison. We will consider a test set consisting of the
following molecules/systems:

(i) two water clustersone with 12 water molecules
(system 1a) and one with 20 (system 1b)

(ii) two linear, saturated fatty acidsC12H24O2 (system 2a)
and C16H32O2 (system 2b)

(iii) two α-helix structuresone with three glycine residues
(system 3a) and one with four (system 3b)

(iv) two conjugated hydrocarbonsC12H14 (system 4a) and
C16H18 (system 4b)

All calculations are performed using the Dunning correlation-
consistent cc-pVDZ and cc-pVTZ basis sets31 with the frozen-
core approximation invoked.
While systems 1a, 2a, 3a, and 4a are small enough for

conventional CCSD(T)/cc-pVTZ calculations to be per-
formed, the calculations on the larger systems 1b, 2b, 3b, and
4b have only been carried out within the smaller cc-pVDZ basis
set. All calculationsconventional as well as DEC calculations
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for the MP2, CCSD, and CCSD(T) modelshave been
performed using a local version of the LSDALTON program32,33

(the DEC-CCSD(T) model in a pilot implementation), and for
all of the presented proof of concept DEC calculations,
regardless of the CC model, we have used atomic fragment
orbital spaces optimized at the MP2 level of theory.20

In section 4.1, we compare DEC-CC and conventional CC
correlation energies for all of the eight test systems, while the
decaying behavior of the DEC-CCSD(T) triples pair
interaction energies with respect to interatomic distance is
investigated in section 4.2.
4.1. DEC-CCSD(T) Correlation Energy. In this section, we

compare DEC-CCSD(T) correlation energies calculated using
FOT values of 10−3, 10−4, and 10−5 a.u. to conventional
CCSD(T) results. In the following analyses, the total
CCSD(T) correlation energy will be decomposed into the
CCSD correlation energy and the (T) correction, which is
further partitioned into the fourth- and fifth-order contributions
of eq 2.0.4. The results for the CCSD correlation energy and
the (T) correction will be reported alongside DEC-MP2 and
conventional MP2 correlation energies for comparison. Table 1
gives conventional CC correlation energies for the systems of
the test set. In Table 2, we investigate the performance of the
DEC-MP2, DEC-CCSD, and DEC-CCSD(T) models by
reporting the total error in the DEC-CC correlation energy,
i.e., the difference between the DEC-CC correlation energy
(EDEC‑CC) and the conventional CC correlation energy for the
full molecule (ECC),

δ = −‐E ECC DEC CC CC (4.1.1)

as well as the DEC recovery of the full correlation energy,

Δ =
‐E

E
CC

DEC CC

CC (4.1.2)

From the results in Table 2, we observe a reduction of the
total error in the correlation energy (δCC) by roughly an order
of magnitude whenever the FOT is reduced by an equal
amount. This behavior is observed across all of the models and
even holds for the (T) energy correction alone. For all of the
test systems, the DEC recovery (ΔCC) for a given FOT is
independent of the nature of the system in question (homo- or
heterogeneous, saturated or unsaturated, one- or three-
dimensional overall structure, dominated by covalent or
hydrogen bonds, etc.). At a FOT of 10−4 a.u., for example,
the DEC-CCSD(T) model succeeds in recovering between
99.83% and 99.96% of the conventional CCSD(T) result.
Furthermore, we observe the same pattern for the relative
errors in moving from a double-ζ to a triple-ζ basis set.
Upon inspecting the individual entries of Table 2, we notice

how the CCSD and (T) total errors in the correlation energy

are of similar magnitude, indicating that neither of the two
dominates the total CCSD(T) error. Phrased differently, no
unnecessary efforts have been made at determining any of the
two contributions to the total CCSD(T) correlation energy at a
higher level of precision than the other. This is found to be true
for both loose and tight FOT values. The smaller recoveries for
the (T) correction, i.e., larger relative errors, in particular at
lower FOT values, naturally arise due to the fact that the (T)
correction is more than an order of magnitude smaller than the
CCSD correlation energy. The total CCSD errors, however,
appear at times to be artificially low; compare, e.g., the MP2
and CCSD errors for systems 1a and 2a at a FOT of 10−4 a.u.
These low CCSD errors are due to cancellations of errors
between the individual CCSD atomic fragment and pair
fragment errors, which can have different signs. For the MP2
model and the (T) correction, the dominant fragment errors
are positive, and such error cancellations are therefore much
less prominent. Finally, we focus on the fourth- and fifth-order
contributions to the (T) correction. As mentioned in section 3,
the fourth-order contribution to the (T) energy correction is
typically an order of magnitude larger in size than the fifth-
order contribution, and from Table 2, we notice how this
relationship holds for the total DEC errors as well. For this
reason, both the total and relative DEC errors for the (T)
correction will be entirely dominated by those for the fourth-
order contribution. For the fifth-order contribution, we
generally observe smaller total errors, but larger relative errors,
than for the fourth-order contribution, due to the fact that the
reference fifth-order contributions in Table 1 themselves are
smaller. However, upon tightening the FOT, the relative fifth-
order errors begin to close in on the same level of accuracy as
observed for all of the other relative quantities in Table 2.

4.2. CCSD(T) Triples Pair Interaction Energies. As
previously discussed for the MP2 and CCSD models,20,21 the
decay of the pair interaction energies in eq 3.2.1b with
interatomic distance is an integral part of the DEC method as it
allows for a screening of negligible contributions from distant
pairs. As mentioned in section 3.2, this screening reduces the
scaling of the method from one that depends quadratically on
system size to one that depends only linearly. In this section, we
provide numerical results that support the theoretical
investigations of section 3.2 on the rapid decay of the
CCSD(T) triples pair interaction energies in eqs 3.2.2b and
3.1.6b with interatomic pair distance. In Figure 2, we plot the
CCSD as well as the fourth- and fifth-order (T) pair interaction
energies as a function of interatomic pair distance for system
1b. The results in Figure 2 have been obtained by carrying out a
CCSD(T) calculation on the full water cluster and
subsequently extracting the pair interaction energies using eqs
3.1.5b and 3.1.6b (and eq 3.1.2b for the CCSD pair energies).

Table 1. Conventional Canonical Correlation Energies (a.u.) Calculated within the cc-pVTZ Basis Set for Systems 1a, 2a, 3a,
and 4a and the cc-pVDZ Basis Set for Systems 1b, 2b, 3b, and 4b

model MP2 CCSD [4] [5] (T) CCSD(T)

System 1a −3.22086 −3.27285 −0.10832 0.00313 −0.10519 −3.37803
System 2a −2.54756 −2.66321 −0.11362 0.00348 −0.11014 −2.77350
System 3a −2.53798 −2.57194 −0.12294 0.00618 −0.11676 −2.68870
System 4a −1.91519 −1.99236 −0.10457 0.00228 −0.10230 −2.09466
System 1b −4.19401 −4.34508 −0.08606 0.00381 −0.08225 −4.42733
System 2b −2.64643 −2.85048 −0.09245 0.00302 −0.08943 −2.93991
System 3b −2.64774 −2.73911 −0.10103 0.00709 −0.09394 −2.83305
System 4b −2.09819 −2.23745 −0.09706 0.00228 −0.09478 −2.33223
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In Figure 2, we observe how the CCSD as well as the fourth-
and fifth-order (T) contributions all decay rapidly with

interatomic pair distance for system 1b. As expected, the
fourth-order contributions are roughly an order of magnitude

Table 2. DEC-CC (MP2, CCSD, and CCSD(T)) Total Errors (δCC, a.u.) and Recoveries (ΔCC, %) with Respect to the
Conventional Correlation Energies in Table 1 for Different Values of the FOT (a.u.)

FOT 10−3 10−4 10−5 10−3 10−4 10−5

System 1a System 1b
δMP2 1.75 × 10−2 3.11 × 10−3 2.10 × 10−4 4.37 × 10−2 5.72 × 10−3 5.58 × 10−4

δCCSD 9.98 × 10−3 −5.47 × 10−4 −4.58 × 10−4 3.57 × 10−2 4.84 × 10−3 2.87 × 10−4

δCCSD(T) 1.70 × 10−2 2.42 × 10−3 −8.99 × 10−5 4.70 × 10−2 7.11 × 10−3 6.61 × 10−4

δ(T) 7.06 × 10−3 2.97 × 10−3 3.68 × 10−4 1.13 × 10−2 2.27 × 10−3 3.74 × 10−4

δ[4] 7.49 × 10−3 3.12 × 10−3 4.05 × 10−4 1.20 × 10−2 2.39 × 10−3 4.00 × 10−4

δ[5] −4.23 × 10−4 −1.54 × 10−4 −3.71 × 10−5 −7.04 × 10−4 −1.18 × 10−4 −2.55 × 10−5

ΔMP2 99.46 99.90 99.99 98.96 99.86 99.99
ΔCCSD 99.70 100.02 100.01 99.18 99.89 99.99
ΔCCSD(T) 99.50 99.93 100.00 98.94 99.84 99.99
Δ(T) 93.29 97.18 99.65 86.29 97.24 99.54
Δ[4] 93.09 97.12 99.63 86.08 97.23 99.54
Δ[5] 86.51 95.10 98.82 81.53 96.91 99.33

System 2a System 2b
δMP2 4.68 × 10−2 4.54 × 10−3 5.50 × 10−4 4.63 × 10−2 6.05 × 10−3 6.69 × 10−4

δCCSD 2.77 × 10−2 6.93 × 10−4 −1.37 × 10−5 1.76 × 10−2 3.40 × 10−3 3.79 × 10−4

δCCSD(T) 3.78 × 10−2 2.59 × 10−3 3.49 × 10−4 2.90 × 10−2 5.11 × 10−3 6.29 × 10−4

δ(T) 1.01 × 10−2 1.89 × 10−3 3.63 × 10−4 1.15 × 10−2 1.71 × 10−3 2.49 × 10−4

δ[4] 1.04 × 10−2 1.96 × 10−3 3.66 × 10−4 1.20 × 10−2 1.77 × 10−3 2.55 × 10−4

δ[5] −3.17 × 10−4 −6.63 × 10−5 −2.87 × 10−6 −4.74 × 10−4 −6.03 × 10−5 −5.14 × 10−6

ΔMP2 98.16 99.82 99.98 98.25 99.77 99.97
ΔCCSD 98.96 99.97 100.00 99.38 99.88 99.99
ΔCCSD(T) 98.64 99.91 99.99 99.01 99.83 99.98
Δ(T) 90.81 98.28 99.67 87.15 98.09 99.72
Δ[4] 90.81 98.27 99.68 87.06 98.09 99.72
Δ[5] 90.89 98.10 99.92 84.33 98.01 99.83

System 3a System 3b
δMP2 2.29 × 10−2 3.64 × 10−3 2.11 × 10−4 3.61 × 10−2 5.36 × 10−3 3.99 × 10−4

δCCSD 2.42 × 10−4 −9.54 × 10−4 −8.81 × 10−4 9.33 × 10−3 1.16 × 10−3 −6.03 × 10−4

δCCSD(T) 1.02 × 10−2 1.10 × 10−3 −5.35 × 10−4 2.06 × 10−2 3.06 × 10−3 −2.81 × 10−4

δ(T) 9.92 × 10−3 2.05 × 10−3 3.46 × 10−4 1.13 × 10−2 1.89 × 10−3 3.22 × 10−4

δ[4] 1.09 × 10−2 2.26 × 10−3 4.15 × 10−4 1.26 × 10−2 2.20 × 10−3 3.90 × 10−4

δ[5] −9.87 × 10−4 −2.08 × 10−4 −6.98 × 10−5 −1.26 × 10−3 −3.12 × 10−4 −6.76 × 10−5

ΔMP2 99.10 99.86 99.99 98.64 99.80 99.98
ΔCCSD 99.99 100.04 100.03 99.66 99.96 100.02
ΔCCSD(T) 99.62 99.96 100.02 99.27 99.89 100.01
Δ(T) 91.50 98.24 99.70 87.96 97.99 99.66
Δ[4] 91.13 98.16 99.66 87.56 97.82 99.61
Δ[5] 84.03 96.64 98.87 82.24 95.59 99.05

System 4a System 4b
δMP2 4.64 × 10−2 4.17 × 10−3 5.32 × 10−4 5.77 × 10−2 6.65 × 10−3 9.21 × 10−4

δCCSD 1.43 × 10−2 −1.80 × 10−3 2.02 × 10−5 2.56 × 10−2 6.17 × 10−4 −1.32 × 10−4

δCCSD(T) 2.96 × 10−2 1.17 × 10−3 4.84 × 10−4 4.03 × 10−2 3.63 × 10−3 5.26 × 10−4

δ(T) 1.53 × 10−2 2.97 × 10−3 4.64 × 10−4 1.47 × 10−2 3.01 × 10−3 6.58 × 10−4

δ[4] 1.54 × 10−2 3.04 × 10−3 4.82 × 10−4 1.51 × 10−2 3.12 × 10−3 6.89 × 10−4

δ[5] −1.69 × 10−4 −6.51 × 10−5 −1.86 × 10−5 −4.11 × 10−4 −1.10 × 10−4 −3.06 × 10−5

ΔMP2 97.58 99.78 99.97 97.25 99.68 99.96
ΔCCSD 99.28 100.09 100.00 98.86 99.97 100.01
ΔCCSD(T) 98.59 99.94 99.98 98.27 99.84 99.98
Δ(T) 85.08 97.10 99.55 84.49 96.82 99.31
Δ[4] 85.24 97.10 99.54 84.43 96.79 99.29
Δ[5] 92.58 97.14 99.18 81.96 95.20 98.66
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lower than the CCSD energies, while the fifth-order
contributions are roughly 2 orders of magnitude lower in
energy. In line with the discussion in section 3.2, the dominant
fourth-order contributions to the (T) correction decay at the
same formal rate as the total CCSD energy and the fourth-
order contributions are hence found to remain below the
corresponding CCSD energies for all pair interaction energies
in Figure 2. By carrying out similar analyses for systems 2b, 3b,
and 4b in Figure 3, this is found to be a general trend, although
more dense plots are inevitably obtained for these systems due
to their characteristics (i.e., heterogeneity). Thus, Figures 2 and
3 collectively show how the pairs which may be screened away
in a DEC-CCSD calculationbecause their energy contribu-
tions are negligible in comparison with the intrinsic DEC
errormay also be omitted from a DEC-CCSD(T) calculation
without compromising the overall accuracy of the calculation.
In fact, since the (T) contribution to the total pair interaction
energy is much smaller on average than the corresponding
CCSD contribution, one could even consider more elaborate
schemes where individual pairs are preordered according to
their estimated energy contribution (or interatomic distance)
and partitioned into three different levels; at the first level (the
smallest energy contributions), the pair interaction energies are
neglected altogether, while, at the two following levels, they are
evaluated at the CCSD and CCSD(T) levels of theory,

respectively. The practical details of such schemes will be
described elsewhere.

5. SUMMARY AND CONCLUSION

We have proposed a reformulation of the (T) triples correction
to the CCSD energy in terms of local HF orbitals such that its
structural form aligns with our recently developed linear-scaling
DEC-CC framework. As a result of the coupling to the DEC
scheme, the precision of the total DEC-CCSD(T) correlation
energy with respect to that obtained from a conventional
calculation may be tuned via a single energy-based input
parameter. In the DEC-CCSD(T) model, a number of triples
intermediates are initially determined from individual
CCSD(T) calculations within local atomic fragment and pair
fragment orbital spaces, and the (T) energy correction next
evaluated in terms of atomic fragment and pair interaction
energies from a formula that structurally resembles that for the
DEC-CCSD correlation energy.
The reformulated expression for the (T) triples energy

correction, which forms the basis for the DEC-CCSD(T)
model, is found to exhibit a formal computational cost that is
twice that of the standard expression. However, in contrast to
the formulation of the correction used in standard implemen-
tations, which is restricted to the nonlocal canonical HF basis,
the alternative expression of the present work may be evaluated
in any basis of optimized HF orbitals. As a consequence, the
(T) correction can be evaluated in a basis of localized orbitals,
making it possible to take advantage of the locality of the triples
amplitudes and obtain a reduced overall computational scaling.
We have discussed how coupled cluster triples effectsin a

basis of localized HF orbitalsmay be accurately treated within
small subsets of the total orbital space for the full molecular
system. In summary, we have found that the same fragment
orbital spaces may be used in the calculation of the CCSD
correlation energy and the (T) correction, which we have
substantiated through the numerical results of a series of proof
of concept calculations. From the dominant distance decay of
the (T) pair interaction energies, which fall off at the same
formal rate as the underlying CCSD counterparts, we have
furthermore found that these may be neglected beyond a
certain interatomic distance (as for the DEC-CCSD model).
This ultimately leads to a linear-scaling algorithm for the
evaluation of the (T) correction and, in return, the total
CCSD(T) correlation energy. Additionally, since the CCSD(T)
atomic fragment and pair interaction energies may be evaluated

Figure 2. CCSD (ΔEPQCCSD, blue circles) as well as fourth- and fifth-
order (T) (ΔEPQ[4]/ΔEPQ[5], green squares and red crosses, respectively)
contributions to the CCSD(T) pair interaction energy as a function of
the interatomic pair distance for system 1b.

Figure 3. CCSD (ΔEPQCCSD, blue circles) as well as fourth- and fifth-order (T) (ΔEPQ[4]/ΔEPQ[5], green squares and red crosses, respectively) contributions
to the CCSD(T) pair interaction energy as a function of the interatomic pair distance for systems 2b, 3b, and 4b.
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independently, the algorithm for the DEC-CCSD(T) model
becomes massively parallel.
As a final outlook, we note how the general structure of the

(T) energy correction within the DEC scheme will also be
applicable to the energy corrections of alternative noniterative
CC triples models, such as, e.g., the asymmetric CCSD(T)
model (the ΛCCSD(T) model)34−36) and the so-called [T]
variants of the CCSD(T) model (the CCSD[T] model37) and
the ΛCCSD(T) model (the ΛCCSD[T] model38). Addition-
ally, the perturbative energy corrections of the recently
proposed CCSD(T−n) models38−40 may also be formulated
such that they align with the structure of the (T) energy
correction within the DEC scheme. Although all of these
alternative models come at a higher computational cost than
the CCSD(T) model, applying the DEC strategy will warrant
that the models may also be evaluated using formally linear-
scaling algorithms.
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Chem. Phys. 2013, 139, 094105.
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a b s t r a c t

We present a scalable cross-platform hybrid MPI/OpenMP/OpenACC implementation of the Divide–
Expand–Consolidate (DEC) formalism with portable performance on heterogeneous HPC architectures.
The Divide–Expand–Consolidate formalism is designed to reduce the steep computational scaling of
conventional many-body methods employed in electronic structure theory to linear scaling, while
providing a simple mechanism for controlling the error introduced by this approximation. Our massively
parallel implementation of this general schemehas three levels of parallelism, being a hybrid of the loosely
coupled task-based parallelization approach and the conventional MPI +X programming model, where
X is either OpenMP or OpenACC. We demonstrate strong and weak scalability of this implementation
on heterogeneous HPC systems, namely on the GPU-based Cray XK7 Titan supercomputer at the Oak
RidgeNational Laboratory. Using the ‘‘resolution of the identity second-orderMøller–Plesset perturbation
theory’’ (RI-MP2) as the physical model for simulating correlated electron motion, the linear-scaling DEC
implementation is applied to 1-aza-adamantane-trione (AAT) supramolecular wires containing up to 40
monomers (2440 atoms, 6800 correlated electrons, 24 440 basis functions and 91280 auxiliary functions).
This represents the largestmolecular system treated at theMP2 level of theory, demonstrating an efficient
removal of the scaling wall pertinent to conventional quantum many-body methods.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In recent decades, quantum-mechanical electronic structure
calculations have become an integral part of many disciplines
of molecular sciences, e.g., chemistry, physics, material science,
atomically precise manufacturing, molecular biology, and phar-
macology. Electronic structure calculations have thus become an
invaluable tool for the interpretation and rationalization of experi-
mental results. Additionally, electronic structure calculations have
also been proven important due to their predictive power, for exam-
ple, in the design of new molecular structures and materials with
desired properties. The reliability of such predictions increases
with an increasing accuracy of the electronic structure calculations.
Consequently, the development of high-accuracy electronic struc-
ture models has therefore become a task of high priority.

* Corresponding author.
E-mail address: tkjaergaard@chem.au.dk (T. Kjærgaard).

In electronic structure calculations, the electronic Schrödinger
equation is solved approximately because of its unfavorable com-
putational scaling. For smaller molecular systems, the coupled-
cluster (CC) model is the state-of-the-art wave-function method,
and a hierarchy of approximate CC models – MP2 [1] (second-
orderMøller–Plesset perturbation theory), CCSD [2] (coupled clus-
ter with singles and doubles), and CCSD(T) [3] (coupled cluster
with singles, doubles, and perturbative triples) – has been es-
tablished, where the exact solution to the Schrödinger equation
is approached in a systematic manner, and the accuracy of the
calculations hence systematically controlled. Using the CC hierar-
chy of approximate models, energy levels, structures, and many
molecular properties of small molecules can be computed to an
accuracy challenging experimental results [4].

The standard formulation of the CC model hierarchy exhibits
a steep polynomial computational scaling with the system size
(number of simulated particles), which for many years has hin-
dered the CC hierarchy from being applied to studying large

http://dx.doi.org/10.1016/j.cpc.2016.11.002
0010-4655/© 2016 Elsevier B.V. All rights reserved.



T. Kjærgaard et al. / Computer Physics Communications 212 (2017) 152–160 153

molecular systems. For this reason, electronic structure calcula-
tions of large molecular systems have for many years been carried
out using density functional theory (DFT) methods. In DFT, it is
proven that a universal density functional exists, however no clue
is given to a systematic way for determining this functional. DFT
is therefore a semi-empirical theory where a physical intuition and
performance statistics have been guiding the development of new
functionals, all with ‘‘improved performance’’. Although successful
and computationally efficient, the DFT approach may always be
questioned for its reliability. In the long run it is ‘‘a must’’ for
molecular sciences to have the capability of obtaining rigorous
high-accuracy solutions to the electronic Schrödinger equation. At
the same time, the corresponding high-accuracymany-bodymeth-
ods should still stay computationally affordable. Ideally a linear
scaling of the computational cost with the system size is desired.
Below we demonstrate how this goal can be achieved using the
Divide–Expand–Consolidate formalism [5–7]. An important point
is that the linear-scaling regime is activated only after some critical
system size, thus requiring large-scale computational resources in
order to get there. Consequently, a scalable parallel implementa-
tion of the DEC formalism is absolutely necessary in order to effi-
ciently simulate large molecular systems. Taking into account the
probable architecture of future large-scale HPC platforms, which is
likely to be heterogeneous, the goal of this paper is to describe our
massively parallel, accelerator-enabled implementation of the DEC
formalism and to demonstrate its scalability on an existing large-
scale heterogeneous HPC system, namely the GPU-based Cray XK7
Titan supercomputer located at the Oak Ridge National Laboratory.

The specific physical model we focus on in this paper is the
lowest member of the CC hierarchy, the MP2 model. The com-
putational cost of a conventional MP2 formulation scales as kN5,
where N is the number of one-electron basis functions in the
calculation and k is a prefactor. The complexity of a conventional
MP2 formulation may be reduced using two different strategies:
(i) reducing the prefactor k, and (ii) reducing the N5 scaling to a
lower power, ideally to a linear dependence on N . Both of these
strategies require that approximations are introduced in the con-
ventional MP2 model.

The prefactor k may be reduced using the RI approximation
[8–12], which is a standard approximation used for reduction of
the complexity of the conventionalMP2 formulation that has led to
the RI-MP2 method [13–22]. In the RI approximation, a resolution
of the identity is introduced to replace the evaluation of four-
center two-electron repulsion integrals (ERIs) by evaluation of
two- and three-center integrals. The error of the RI approximation
is fully controllable via the size and design of the auxiliary basis in
which the resolution of the identity is expanded. In the limit of a
complete (infinite) auxiliary basis, the conventional MP2 energy
is thus recovered. As an alternative to the RI approximation, a
Cholesky decomposition [23–25] of the ERIs may be performed.
Massively parallel implementations have been reported for the
RI-MP2 method [14,16]. However, these implementations do not
provide a linear scaling of the computational cost and the corre-
sponding calculations will inevitably hit the scaling wall when the
size of the system is increased. Thus, a massively parallel imple-
mentation of the brute-force RI-MP2 approach only moderately
extends its application range.

In practice it turns out that the N5 scaling of the conventional
MP2 algorithm may be reduced by exploiting the local nature
of the electron correlation. The corresponding local correlation
methods [26,27] are formulated either in the atomic orbital (AO)
basis [28–30] or in a basis of localized molecular orbitals (MOs)
[31–44]. Our recently introduced Divide–Expand–Consolidate
(DEC) strategy [5–7] is a local MO-based correlation approach, in
which a calculation of a large molecule is partitioned into a large
number of smaller atomic fragment andpair fragment calculations.

It should be emphasized that a DEC calculation does not involve
any physical fragmentation of the molecule, but merely a parti-
tioning of the local orbital space. In principle, the number of pair
fragments scales quadratically with the system size; however, due
to the R−6 decay of the dispersion energieswith the inter-fragment
distance, R, distant pairs may be neglected without compromising
the accuracy of the calculation [5,6], ultimately leading to a linear-
scaling algorithm. As the calculations of individual fragments are
independent of one another, DEC is also a massively parallel al-
gorithm [45] by construction. The fragments and their sizes are
dynamically determined in a black-boxmanner, such that the error
due to partitioning of a molecule into fragments is fully controlled
via a single parameter, the fragment optimization threshold (FOT).
The precision of the DEC calculation may therefore be systemati-
cally increased by decreasing the FOT. In the limiting case of the
FOT approaching zero, the conventional MP2 result is recovered.
Combining our DEC strategy with the RI-MP2 model defines the
DEC-RI-MP2 algorithm [46].

Other local MO-based MP2 correlation methods include the
local coupled-clustermethod ofWerner and co-workers [32,47,48]
and the domain-based local pair-natural-orbital coupled-cluster
(DLPNO-CC) method of Neese and co-workers [36,44]. In these
approaches a full molecular CC equation is solved where the ex-
citation space for each pair of occupied orbitals is assigned a re-
stricted local virtual orbital space, which is defined in terms of fixed
(i.e., not dynamical) thresholds. The default values for these fixed
thresholds have been determined empirically, and the precision of
the correlation energy compared to a conventional calculation is
therefore in general unknown. In addition to DEC, there exist other
local correlation methods relying on a partitioning of the orbital
space rather than on a physical fragmentation of the molecule,
e.g., the cluster-in-molecule method [49,43] and the incremental
scheme [50,35]. However, only DEC uses a dynamical adaptation
of orbital fragment spaces to a predefined energy error. On the
contrary, the Divide-and-Conquer MP2 [51,52] and the Fragment
Molecular Orbital MP2 (FMO-MP2) [53,54] are two examples of a
myriad of molecular fragmentation approaches [55–60]. In these
methods, a physical fragmentation of a molecular system into
fragments is performed based on a ‘‘chemical intuition’’, making
it impossible to estimate the error introduced compared to a con-
ventional MP2 calculation [22].

The other group of local correlation approaches, for example the
AO-basedMP2 formulations, usually employ a Laplace transforma-
tion [61,62], where the orbital energy denominator is eliminated
from the conventional MO-basedMP2 energy expression to obtain
a formulation in terms of AO integrals [28,63–65]. Since AOs are lo-
cal by construction, efficient integral screening may be performed,
where an R−4 decay may be exploited when ERIs are evaluated.
However, as the integral decay (R−4) is slower than the dispersion
energy decay (R−6), the locality of electronic dispersion effects is
not fully exploited in the Laplace AO-based MP2 methods.

In this article we report a massively parallel linear-scaling DEC-
RI-MP2 implementation enhanced with the accelerator support,
where our DEC strategy is used to reduce the steep N5 scaling of
the MP2 method to linear scaling (N) and the RI approximation is
used for reducing the prefactor k for individual fragment calcula-
tions. The DEC-RI-MP2 calculations are carried out for the stacked
1-aza-adamantane-trione supramolecular wires containing up to
40monomers. The largest calculation comprises 2440 atoms, 6800
correlated electrons, 24 440 basis functions and 91280 auxiliary
functions. It ran on 14952 out of 18688 nodes of the Titan su-
percomputer, a GPU-based Cray XK7 HPC platform which is cur-
rently positioned # 3 in the TOP500 list. The presented calculation
is 2.5 times larger than the largest conventional RI-MP2 calcu-
lation [16]. We also demonstrate the weak and strong parallel
scalability of our DEC algorithm.
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Fig. 1. Illustration of an atomic fragment P . The string of spheres is a schematic
representation of a molecule with each sphere representing an atom. The local
orbital spaces of occupied MOs [P] (blue), unoccupied MOs [P] (red), standard
AOs {P}AO (green), and auxiliary AOs {P}aux (gray) are indicated. The blue and red
square encapsulated by the bold black box represents the spaces P and P . (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

2. Theory

In the DEC-RI-MP2 scheme, localized occupied and unoccupied
Hartree–Fock (HF) orbitals [66–82] are used to efficiently describe
the short-ranged electron correlation effects, partitioning the cal-
culation into many small and independent fragment calculations
and ultimately obtaining a linear-scaling algorithm (for a recent
review on the characterization and generation of local occupied
and virtual HF orbitals see Ref. [83]).

In this section, we summarize the DEC-RI-MP2 algorithm and
refer the reader to Ref. [46] for additional details. The first step in
the DEC scheme is to assign each localized MO to an atomic site
(P,Q , . . .). Each site P thus gets assigned a set of occupied, P , and
unoccupied, P , localized orbitals.

The RI-MP2 energy is the sum of the HF contribution, EHF,
which represents the mean-field electronic interactions, and the
correlation contribution, Ecorr, which represents the dynamical
correlation among the electrons. In conventional implementations,
the determination of the correlation energy is the time-dominating
part, and we therefore focus on Ecorr here and refer the reader to
Refs. [84–94] for linear-scaling HF algorithms. In a DEC-RI-MP2
calculation, the correlation energy is partitioned into independent
fragment calculations according to

Ecorr =

∑
P

EP +

∑
P>Q

∆EPQ , (1)

where the atomic fragment energy EP and the pair fragment energy
∆EPQ are given by,

EP =

∑
ij∈P

∑
ab∈[P]

taibj(2gaibj − gajbi), (2)

∆EPQ =

∑
i∈P
j∈Q

∑
ab∈[P]∪[Q ]

taibj(2gaibj − gajbi)

+

∑
i∈Q
j∈P

∑
ab∈[P]∪[Q ]

taibj(2gaibj − gajbi). (3)

Here, gaibj and taibj are ERIs and RI-MP2 wave function ampli-
tudes, respectively, expressed in the local orbital basis. The ampli-
tudes andERIs for the atomic fragment P are determinedusing a set
of occupiedMOs [P], unoccupiedMOs [P], standard AOs {P}AO, and
auxiliary AOs {P}aux spatially close to P , see Fig. 1 for a schematic
illustration and Table 1 for an overview of the notation. The MOs
are expanded in the {P}AO space, and the {P}aux space is used for
the RI approximation of the ERIs.

Table 1
Notation for indices and dimensions of different local orbital spaces for an atomic
fragment P .

Explanation Notation Dim.

Occupied MO, assigned to P i, j ∈ P Ō
Unoccupied MO, assigned to P a, b ∈ P V̄
Occupied MO local space i, j ∈ [P] O
Unoccupied MO local space a, b ∈ [P] V
Occupied pseudo-canonical I, J ∈ [P] O
Unoccupied pseudo-canonical A, B ∈ [P] V
Standard AO local space µ ∈ {P} N
Auxiliary AO local space α ∈ {P}aux Naux

If one removes the restrictions in the summations over unoccu-
pied orbitals in Eqs. (2) and (3), the standard RI-MP2 correlation
energy is obtained, preventing any reduction in computational
cost. However, using the locality of the orbitals (and hence of
the ERIs and amplitudes), the orbital spaces [P] can be restricted
to a small subset of the complete orbital space without affecting
significantly the precision of the calculationwhile resulting in large
computational savings. In practice, these local spaces are deter-
mined in a black box manner using a single parameter, the FOT
[6]. The resulting fragment energy EP is thus controlled by the FOT
and ensured to reach a user-defined accuracy. The value of the FOT
therefore determines the overall accuracy and the computational
cost of a DEC-RI-MP2 calculation. While the number of atomic
fragments scales linearly with system size, the number of pair
fragments scales quadratically with the system size; however, due
to the rapid decay of dispersion energies(inverse pair distance to
the sixth power [95]), distant pairsmay be neglectedwithout com-
promising the precision of the calculation [6], ultimately leading to
a linear-scaling algorithm.

In summary, a DEC-RI-MP2 energy calculation proceeds as fol-
lows:

1. First, the HF information is read (Fock matrix and localized
MOs).

2. The orbital spaces [P] are optimized to provide atomic frag-
ment energies, EP , to the FOT precision.

3. A reduced set of pair fragments is selected based on esti-
mations of their energy contribution (pair estimate calcula-
tions).

4. The pair fragment energies are computed for the selected
pairs using Eq. (3) (this is the most expensive step).

5. Finally, the total correlation energy is calculated using
Eq. (1).

There are three parallelization levels in the DEC scheme [45]:
(1) coarse-grained parallelization, where independent fragment
calculations (tasks) are distributed among groups of MPI pro-
cesses, (2) medium-grained parallelization, where each fragment
calculation is parallelized across a number of nodes constitut-
ing an MPI process group, and (3) fine-grained parallelization
(OpenMP/OpenACC parallelization across the CPU/GPU cores on
each node).

At the coarse-grained parallelization level, the independent
tasks (individual and pair-fragment calculations) are sorted ac-
cording to their size. The largest tasks are scheduled first, being dis-
tributed among MPI process groups. As the tasks become smaller
in size, the original groups of MPI processes may split into smaller
groups such that the size of each MPI process group is appropriate
for the size of the tasks it is executing. The task based workflow
together with the dynamic execution unit granularity adjustment
ensures load balancing at the coarse-grained parallelization level
and efficiency at the medium-grained parallelization level.

Regarding the medium-grained parallelism, each (atomic or
pair) fragment can be seen as a standard RI-MP2 calculation in
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a reduced orbital space and can be efficiently parallelized over
a number of nodes. The evaluation of Eqs. (2) and (3) requires
the determination of the local amplitudes taibj. In order to obtain
a non-iterative algorithm these amplitudes are first determined
in a so-called pseudo-canonical basis tAIBJ , which is generated by
diagonalizing the local Fock matrices (Fij with ij ∈ [P] and Fab with
ab ∈ [P]). Denoting the occupied/unoccupied diagonal elements
of the Fock matrix in the pseudo-canonical basis as (ϵI , ϵJ )/(ϵA, ϵB),
tAIBJ is evaluated in the following step, which is themost expensive
and scales as NauxV 2O2 (see Table 1),

tAIBJ =
gAIBJ

ϵI + ϵJ − ϵA − ϵB
=

∑
α Cα

AIC
α
BJ

ϵI + ϵJ − ϵA − ϵB
, (4)

where the RI approximation has been used to express the ERIs
in terms of fitting coefficients Cα

AI . The pseudo-canonical ampli-
tudes and ERIs are subsequently transformed back to the local
basis (tAIBJ → taibj) for the evaluation of the fragment energy
using Eqs. (2) or (3). Most of the computations required to ob-
tain the fragment energies (e.g., Eq. (4)) can be performed by
threaded/accelerated optimized libraries (BLAS) or compiler direc-
tive parallelized kernels (OpenMP on the CPU or OpenACC on the
GPU). This corresponds to the fine-grained level of parallelization.
The construction of the ERIs and the amplitudes, as well as the
subsequent transformation from the pseudo-canonical to the local
basis are thus performed on the GPU, while the fitting coefficients
are currently constructed using a CPU only code.

In Fig. 2, the coarse-grained parallelism of DEC is exemplified
for a calculation containing 12 fragments and using 9 nodes. Node
0 is the global master node (blue), and the remaining nodes are
divided into slots each containing 4 nodes, where one of the nodes
is chosen as the local master (red) and the remaining nodes are
referred to as local slaves (gray). A local master and its local slaves
are collectively referred to as a slot. The fragment calculations are
ordered according to their size, and the global master distributes
the fragment jobs to the local masters. Each local master then
carries out its job in collaboration with its local slaves. When a
slot has finished a job, the local master sends the fragment energy
back to the global master, which then instructs the local master
to carry out a new fragment calculation. The size of the fragments
differ significantly for the various fragments and ultimately de-
termines the efficiency of the medium-grained parallelization. We
have therefore devised a scheme where the slots divide dynami-
cally if the ratio between the most expensive computational step
(NauxV 2O2) and the most expensive communication step (NauxVO)
is ‘‘too small’’. Thus, roughly speaking, the larger OV is, the more
nodes can efficiently be used at the medium-grained level. In
practice we use the following condition to determine whether a
slot containing nnodes should divide or not,

Divide slot if: nnodes > OV/X . (5)

Empirical investigations have established that X = 8000 is a
reasonable value. This ensures that a large fragment (e.g., V =

2446,O = 181) will be done using at least 27 nodes, while a small
fragment (e.g., V = 273,O = 18) is done using a single node.

Although the ordering of fragments according to size and the
splitting of slots according to Eq. (5) is an attempt to minimize the
idle time, some loss is to be expected, and we distinguish between
local (dotted lines) and global (wiggly lines) loss of efficiency in
Fig. 2. The local loss is associated with the medium-grained par-
allelization and is present due to non-ideal load balancing among
the local working nodes (local master and local slaves), while the
global loss occurswhen all jobs have been distributed by the global
master and some of the nodes wait for the remaining jobs to finish.

Fig. 2. Coarse-grained parallelization of the DEC scheme exemplified by a calcula-
tion with 12 fragments using 9 nodes. The fragment jobs are ordered according to
size in descending order on the global master (blue). The local masters (red) receive
job instructions, carry out job in collaborationwith the local slaves (gray) in the slot,
and send the fragment energy to the global master. The slots divide dynamically to
ensure good medium-grained parallelization, see text. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

3. Molecular systems used to measure performance

As an example application for the DEC-RI-MP2 method, we
consider a new class of molecules, the 1–aza–adamantanetriones
(AATs) [96,97]. AATs spontaneously self–assemble into ordered
nano–structures, and their electronic and physical properties can
be experimentally tuned. Therefore, AATs are promising model
materials, and in their supramolecular wire form they have po-
tential applications in the fields of molecular electronics and
optoelectronics. The intrinsic forces involved in the nanoscale
self–assembly of these supramolecular structures are dominated
by dispersion forces and π–π stacking interactions, that can only
be accurately described using correlated methods. We will apply
the DEC-RI-MP2 model to calculate interaction energies of AATs
using the correlation-consistent cc-pVDZ basis set and the auxil-
iary cc-pVDZ-RI basis set [98]. We will present scientific results
and error analysis of the DEC-RI-MP2 calculations for up to 10
monomers here and in the performance section we will demon-
strate the computational efficiency of DEC-RI-MP2 by carrying out
calculations for up to 40 stacked AATs, which is far beyond what
can be done using a conventional implementation.

The AATn structure for a general n-mer was obtained by du-
plicating and translating the optimized AAT2 structure (n/2 − 1)
times, such that the distance between the two central nitrogen
atoms in two adjacent AAT units was the same as in the optimized
dimer (5.12 Å), see Fig. 3. The interaction energy for AATn (∆EAATn )
was then calculated as the difference in energy between the AATn
system and the two noninteracting AATn−1 and AAT1 systems,

∆EAATn = EAATn − EAATn−1 − EAAT1 . (6)

The EAATn−1 and EAAT1 monomer calculations were corrected for
basis set superposition errors using the counterpoise correction
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Table 2
Interaction energies ∆EAATn for n = 2, 4, 6, 8, 10 calculated using the HF, conventional RI-MP2 (conv), and DEC-
RI-MP2 models (using the cc-pVDZ basis). We also give the absolute errors of the DEC interaction energy and the
DEC total energy compared to the conventional reference numbers with the recoveries of the correlation contribution
(EDEC

corr/E
conventional
corr ) given in parenthesis. All results are given in eV.

n HF Conv DEC Interaction error Total error

2 0.729 −0.718 −0.710 0.008 (99.43%) 0.090 (99.97%)
4 0.721 −0.746 −0.710 0.036 (97.52%) 0.246 (99.95%)
6 0.716 −0.748 −0.724 0.023 (98.41%) 0.382 (99.95%)
8 0.716 −0.748 −0.727 0.023 (98.43%) 0.528 (99.95%)

10 0.716 −0.724

Fig. 3. Illustration of AAT10 with one of the localized molecular orbitals shown in
blue. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

[99]. The resulting interacting energies are given in Table 2 for
HF, conventional RI-MP2, and DEC-RI-MP2 where we have used
a FOT of 10−5a.u. = 0.272 meV for the DEC calculations. The DEC
errors compared to the conventional RI-MP2 calculations are also
presented.

The HF model does not describe dispersion forces and it there-
fore wrongly predicts the interaction energies to be positive, i.e.,
the AAT units repel each other at the HF level of theory. On the
contrary, the conventional RI-MP2 interaction energies are nega-
tive (attractive) and thus describe the correct physics due to the
RI-MP2 correlation contribution, which represents dispersion ef-
fects. An inspection of the DEC errors in Table 2 shows that the DEC
error of the total energy EAATn increases linearly with system size,
as expected, while the recovery of the conventional correlation
energy is roughly constant at 99.95%. More importantly, the inter-
action energy error does not change significantly with system size.
In fact, for the largest systems, the interaction energy error is more
than an order of magnitude smaller than the total error—e.g., for
AAT8, the total error is 0.528 eV, while the error in the interaction
energy is only 0.023 eV. In short, theDEC-RI-MP2 scheme is capable
of accurately reproducing the conventional results.

4. System and environment where performance wasmeasured

The experimental platform is the Titan supercomputer, a Cray
XK7 system deployed by the US Department of Energy at the
Oak Ridge National Laboratory, which currently occupies the third
position on the Top500 list. The machine comprises 18688 nodes,
each consisting of a 16-core AMD Opteron 6274 processor with
32GB of main memory and an NVIDIA Tesla K20x GPU accelerator
(Kepler architecture) with 6GB of GDDR5 memory. Titan’s nodes
are connected according to a 3D torus topology with the Cray
Gemini network interfaces. The application-level communication
layer is provided by the Cray MPI library implementing most
of the MPI 3.0 features, a derivative of MPICH-2 from Argonne
National Laboratory. The OpenMP v.3.0 and OpenACC v.2.0 run-
times implemented in Cray Compiler Environment v.8.4.2 are used
for CPU multi-threading and GPU acceleration, respectively. The
Cray OpenACC implementation available on Titan is specifically
optimized for Nvidia Kepler GPU architecture. Finally, the Cray Lib-
Sci v.13.2.0 scientific library provides optimized versions of linear
algebra operations, namely the dgemmand dsyev routines (double
precision arithmetic was used throughout the calculations).

We have measured the number of floating point operations
(FLOPs1 ) performed on the CPU using the PAPI library [100]. The
FLOPs performed on the GPU were not directly measured, instead
they were estimated using a CPU compiled version of the GPU
kernels and analyzed using PAPI. During the performance calcula-
tions an estimated GPU FLOP count was added to the accumulated
GPU FLOPs each time a GPU kernel was invoked. The CPU-only and
hybrid CPU/GPU versions will perform the same number of FLOPs.
To validate the estimated GPU FLOP count we used AAT4 as a test
system and found that the CPU PAPI-counted and GPU estimated
FLOPs of the hybrid CPU/GPU code corresponded to 99.5% of the
FLOPs measured by PAPI for the CPU-only code.

Efficient and lightweight checkpointingwas added for the com-
pleted fragments, in the sense that the global master simply writes
a file with the fragment energy and identity of the completed
fragments. This limits I/O but means that each interrupted frag-
ment calculation has to be restarted from scratch. During the
performance calculations, Titan suffered fromahigher thannormal
rate of node failures, and checkpointing was crucial for successful
completion of the calculations. As the massively parallel archi-
tectures have an ever increasing number of nodes and thus risk
of node failures, MPI fault tolerance is increasingly important.
DEC is set up to exploit future MPI fault tolerance mechanisms,
once this is part of the MPI standard, by reassigning the affected
fragment to the available nodes. The checkpointing also allows for
the fragment optimization and pair estimate calculations to be run
using one set of nodes, while a larger set of nodes can be used for
the computationally more demanding pair fragment calculations.

All results reported in Section 5 used the same value of themain
DEC threshold (FOT = 10−5 a.u.) as in Section 3, and the calcu-
lated correlation energies are therefore highly accurate (expected
99.95% recovery of the conventional RI-MP2 correlation energy).
The weak scaling analysis in Section 5 was performed for the full
application including I/O (step 1–5 in Section 2) while the strong
scaling analysis was performed for the time-dominating part only,
the pair fragment calculations (step 4 in Section 2). We further
emphasize that the construction of the localized HF orbitals is not
part of the DEC application.

The DEC code is part of the lsdalton program [101] and the
source code is distributed free of charge as a part of theDalton2016
suite [102]. The lsdalton program have been used to construct the
localized HF orbitals.

5. Performance results

In Table 3 and Fig. 4 we show strong scalability results for
AAT10 starting with 3738 nodes. Efficiencies from 74.8% to 94.3%
are observed. The efficiency is quite remarkable considering the
complexity of the problem. TheAAT10 calculation consists of 16023
pair fragments andwe used an initial slot size of 32 nodes resulting
in (14952/32) 467 slots (see Fig. 2 for an illustrative example of 12
fragments, 9 nodes, and 2 initial slots with a slot size of 4 nodes).

1 FLOPs will denote FLOP in plural, while wewill use FLOPs/s to denote FLOPs per
second. Also, we use 1 EFLOPs = 1018 FLOPs.
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Table 3
Strong scalability results on Titan for AAT10 using 3738–18400 nodes. TTS denotes
the Time-To-Solution and the last column denotes how many times a calculation
was restarted due to hardware failures.

# nodes TTS (s) Efficiency Restarted

3738 39400 1
7476 20900 94.3 0

11214 15400 85.3 0
14952 12100 81.5 1
18400 10700 74.8 2

Fig. 4. Strong scaling plot for coarse-grained parallelization: AAT10 using 3738 to
18400 nodes (same as Table 3) with strong scaling efficiency numbers along the
curve. The blue line displays ideal strong scaling behavior. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

Due to the inhomogeneous fragment sizes (ranging from 1106 to
9366 auxiliary functions) and the fifth-order scalingwith fragment
size, the time for the individual fragment calculations ranges from
6 s using a single node to 1 h and 37 min using 32 nodes.

The efficiency is particular impressive considering that the
14952 node calculation had to be restarted once and the 18400
node calculation twice due to hardware failures and each restart
results in an increased global loss (see Fig. 2). Due to the short
TTS for the large node jobs, hardware crashes become increasingly
detrimental for the large node jobs.

Load balancing and job distribution are crucial for efficient
strong scaling. For instance, in the case of the 18400 node job, the 1
h and 37min fragment calculation constitutes 54% of the total wall
time. If a larger number of nodes is used the strong scaling perfor-
mancewill eventually be limited by the time for this fragment. The
time for the largest fragments can in this case be reduced by using
more than 32 nodes in each slot (see Fig. 5). The larger slot sizes
improve the strong scaling by reducing the global loss, but the price
is a decrease in the medium-grained parallelization efficiency (see
Fig. 5), and hence an increase in the local loss (see Fig. 2). A larger
slot size will also improve the checkpointing as only information
for the completed fragment calculations are saved (see Section 4).

Fig. 6 shows the time-to-solution (TTS) for the different systems
{AAT10, AAT20, AAT30, AAT40} of increasing size using 14952 Titan
nodes. For these systems, the size of the individual fragments is
constant with respect to the total system size due to the local
nature of electron correlation, and the computational cost is there-
fore mainly determined by the number of fragments. The proper
treatment of dispersion effects (Section 2) means that the linear-
scaling regime is approached asymptotically. In particular, the
number of pair fragments considered for AAT20 (33 992) is slightly
larger than twice the number of pair fragments in AAT10 (16 023),
while the number of pair fragments considered for AAT40 (69 390)

Fig. 5. Strong scaling plot for the medium-grained parallelization: The largest pair
fragment in AAT10 using 12 to 64 Titan nodes. The numbers are efficiencies.

Fig. 6. Computational scaling with system size for AATs of increasing lengths using
14952 Titan nodes. The blue line displays the ideal linear scaling behavior. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

is 4
3 times larger than for AAT30 (51 949). The linear-scaling regime

is thus reached for AAT30 and AAT40. The deviations from ideal
linear-scaling behavior in Fig. 6 can also be explained from the
fact that the four calculations were restarted 1, 3, 6, and 6 times,
respectively.

In Table 4, we show weak scalability results for the different
systems {AAT10, AAT20, AAT30, AAT40} of increasing size, defining the
weak scalability efficiency as Ews = FjPiTi/(FiPjTj) where Fi, Pi, and
Ti denote the FLOPs, number of processors and TTS for system i,
respectively. We achieve a 83.1% weak scaling efficiency for AAT40
relative to AAT10 despite having to restart the AAT40 calculation 6
times.

Each fragment calculation requires access to the Fock matrix
and the MO coefficients. For AAT40 this corresponds to 9.6 GB of
data. The current scheme stores the data locally on the node which
means that each MPI rank has less memory available for the AAT40
calculation than for AAT10 where this data only takes up 0.6 GB.
This reduction in available memory results in more tiling and less
efficient code which, together with 6 hardware failures, explains
the non-ideal weak scalability. A better strategy is to store the
required data in parallel distributed memory and retrieve it using
one-sided MPI communication. This scheme will be operational
shortly.
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Table 4
Weak scalability results on Titan for AATs of different size using 3738–14952
nodes. Theweak scaling efficiency Ews is given relative to AAT10 and the last column
denotes the number of times a calculation was restarted. The EFLOPs column de-
notes the accumulated number of EFLOPs performed during the entire simulation.

System # nodes EFLOPs TTS (s) Ews (%) restarted

AAT10 3738 4.08 47570 1
AAT20 7476 9.41 60430 90.8 1
AAT30 11214 15.0 71180 81.9 10
AAT40 14952 19.4 68060 83.1 6

Fig. 7. A histogram of GPU speedup for the individual pair fragments in AAT4 . The
dotted line is the normal distribution using a standard deviation of 1.1 and a mean
of 6.2.

The weak scaling attribute arises from the linear scaling
features of the DEC algorithm and ensures that we may treat
molecular systems significantly larger than the conventional im-
plementation. With its 24440 basis functions and 91280 auxiliary
functions the AAT40 RI-MP2 energy calculation is 2.5 times larger
than the calculation of Katouda and Nakajima [16] using the K
computer. The AAT40 calculation was finished within 19 h on Titan,
using 14952 out of 18688 Titan nodes. In principle, DEC could
easily be applied to larger molecular systems using larger basis
sets, but the prerequisite HF calculation and orbital localization are
currently limiting the size of the systems that may be treated. We
are working on addressing these limitations.

In a conventional calculation the fitting coefficients Cα
ai arewrit-

ten to disk and read in as needed. However, for AAT40 this would
require 49 TB of data (3400 valence orbitals, 19 680 unoccupied
orbitals and 91280 auxiliary functions) and put substantial strain
on the file system. Alternatively, the fitting coefficients may be
stored in parallel distributed memory, which again reduces the
size of the operating memory. The DEC scheme eliminates this
I/O and memory bottleneck. In a DEC calculation each fragment
constructs the part of the fitting coefficients it needs, and stores in
the reported calculation a maximum of 28 GB distributed among
the nodes in the slot. It has been a design decision to limit the use
of I/O despite this being a prominently used technique in quan-
tum chemistry. The I/O is replaced by recalculation and parallel
distributed memory storage, which makes the code portable and
removes possible bottleneck issues in terms of disk requirements.

The speedupwe have obtained through our use of GPUsmay be
estimated by performing an additional calculation without using
theGPUs. For this purposewe chose theAAT4 system. Fig. 7 displays
a histogram of the GPU speedups for the individual pair fragments
in the AAT4 calculation. The maximum GPU speedup achieved is

10.3 while the average is 6.5, and the minimum speedup is 1.03.
The general picture is that the GPU speedup is larger for larger
fragments. This effectively reduces the inhomogeneity of the tim-
ings for the fragment calculations. The smallest speedup of 1.03 is
achieved for the smallest fragment which takes 6.9 s using a single
node, while the time for the largest fragment is reduced from 14 h
and 51 min to 2 h and 0 min using 16 nodes. Since the distribution
of fragment size for the larger AATs is similar to the one for AAT4,
the GPU performance for the larger AATs is similar to the ones
obtained in the AAT4 calculation.

We conclude that, unlike the conventional formulation, the
DEC scheme is asymptotically linear scaling. Furthermore, the DEC
scheme eliminates the I/O and memory bottleneck of the conven-
tional approach. The linear scaling algorithmand the three levels of
parallelization in our DEC implementation ensure strong andweak
scalability. The hybrid cross-platform parallel implementation is
well suited for achieving performance portability on current and
future supercomputers.

6. Conclusions and perspectives

In the presented work, we have applied our recently developed
DEC strategy using the lowest member of the CC hierarchy, the
MP2model, and in combinationwith the RI approximation demon-
strated that DEC-RI-MP2 calculations may be carried out in a
massively parallel manner. The combination of being both linearly
scaling and massively parallel allows our DEC-RI-MP2 method
to be applied to very large molecular systems. Our DEC-RI-MP2
implementation exhibits weak and strong scalability that ensures
performance portability of the DEC-RI-MP2 code to the next gen-
erations of supercomputers. The largest calculations were carried
out on a system comprising 2440 atoms, 6800 correlated electrons,
24 440 basis functions, and 91280 auxiliary functions and using
14952 out of 18688 Titan nodes. The presented calculation is 2.5
times larger than the largest conventional RI-MP2 calculation [16].
As DEC-RI-MP2 offers a full control of accuracy, it may serve as
a supplement to standard DFT calculations and may become the
method of choice for calculations on large molecular systems both
with respect to the interpretation of experimental results and for
reliable predictions of new structures and phenomena in many
areas of molecular sciences. Our DEC strategy may also be applied
to molecular gradients [103,104] and higher members of the CC
hierarchy and we are currently working on carrying out CCSD and
CCSD(T) [105] calculations on large molecular systems using the
DEC strategy.

The capabilities of our DEC strategy have been demonstrated
here by carrying out DEC-RI-MP2 calculations of interaction en-
ergies of AATs using a cc-pVDZ basis set. To bring the calculation
of interaction energies to the next level of accuracy, an extended
basis set and a higher member of the CC hierarchy, e.g. CCSD(T),
have to be used. Furthermore, to remove the basis set error, the
DEC-CC methods have to be extended to include explicit electron-
correlation corrections. We are currently also working along these
lines.

The possibility of carrying out calculations using the DEC-CC
hierarchy may be the start of a new era for hybrid, ONIOM-like,
approaches [106]. In these approaches, methods of different qual-
ity are applied to different parts of a very large system, depending
on the chemical importance of a given part of the system. Taking
as an example an enzyme in solution, at the current stage of
development of the hybrid approaches, an active site of an enzyme
is typically treatedwith DFT, the backbone part of the enzymewith
molecular mechanics (MM) or DFT, and the solvent surrounding
the enzyme with MM. The DEC-CC hierarchy will make it possible
to treat the active site with DEC-CCSD(T) and the backbone part
with DEC-RI-MP2, leaving only the solvent part to an HF or MM
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treatment. As the protein backbone has been suggested to make
important contributions to enzymatic catalysis [107], the possibil-
ity of addressing both the active site and the backbone part with
quantum-mechanical correlated wave functionmethods may shift
the modeling and understanding of enzymatic reactions to a new
level.

The availability of the DEC-CCSD(T) methodwill also enable the
possibility of obtaining results for large molecular systems against
which both DFT functionals, MM force fields, and other local
correlation methods could be benchmarked. The DFT functionals
and MM force fields are often benchmarked for small molecular
systems, for which conventional CCSD(T) results are available.
However, conclusions about the accuracy of the DFT functionals
andMM force fields drawn from these benchmark studies on small
systems do not necessarily carry over to large molecular systems.

Summarizing, the DEC-RI-MP2 massively parallel calculations
reported here have been carried out on the Titan supercomputer at
Oak Ridge Leadership Computing Facility utilizing both CPUs and
GPUs and have shown strong and weak scalability. We have thus
shown that the DEC strategymay effectively be used to remove the
scalingwall for calculating the RI-MP2 correlation energy.We have
also recently performedDEC calculations on other supercomputers
and testing facilities in Europe and USA, including Piz Daint, Curie,
and Vesta. The DEC program has been compiled and run suc-
cessfully on all the aforementioned supercomputer architectures
proving DEC to be cross-platform and easily portable.
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We present a local framework for the calculation of coupled cluster excitation energies of large mole-
cules (LoFEx). The method utilizes time-dependent Hartree-Fock information about the transitions of
interest through the concept of natural transition orbitals (NTOs). The NTOs are used in combination
with localized occupied and virtual Hartree-Fock orbitals to generate a reduced excitation orbital
space (XOS) specific to each transition where a standard coupled cluster calculation is carried out.
Each XOS is optimized to ensure that the excitation energies are determined to a predefined precision.
We apply LoFEx in combination with the RI-CC2 model to calculate the lowest excitation energies of
a set of medium-sized organic molecules. The results demonstrate the black-box nature of the LoFEx
approach and show that significant computational savings can be gained without affecting the accu-
racy of CC2 excitation energies. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4953360]

I. INTRODUCTION

Coupled cluster (CC) theory1,2 is considered one of
the greatest successes of electronic structure theory for the
determination of accurate energies and molecular properties
of systems dominated by a single configuration. Its strength
relies on the hierarchy of CC models that provides a fast
and systematic convergence towards the full configuration
interaction (FCI) results. The main problem of CC is its
computational cost and in particular its steep scaling with the
system size. The dynamic correlation effects described by CC
theory are spatially local and the steep scaling of the models
can be attributed to the use of canonical molecular orbitals
(CMOs) that are highly delocalized. This issue prevents a
straightforward application of CC theory to large molecules
and approximate CC models have to be developed.

The need for accurate and reliable methods for the
calculation of excitation energies of large molecular systems
can be seen from the number of attempts to do so in the last
decade. All recently developed methods try to take advantage
of the locality of correlation effects and electronic transitions.
The concept of natural transition orbitals (NTOs)3 was, for
example, used in the incremental scheme devised by Mata
and Stoll4 where they used a mixed occupied orbital space
composed of NTOs and localized molecular orbitals (LMOs).
The virtual orbitals were left intact, and they relied on a many-
body expansion of the excitation energies with a fragmentation
of the occupied molecular orbital space to reduce the cost of
the equation-of-motion coupled cluster singles and doubles
(EOM-CCSD) model.

Other local CC methods focus on reformulations of the
second-order approximate coupled cluster singles and doubles
(CC2) model.5 The CC2 model has proven to be a good
compromise between accuracy and computational cost for

a)pablo.baudin@chem.au.dk

the calculation of frequency-dependent molecular properties
and its reformulation using density fitting techniques (e.g.,
the resolution of the identity, RI-CC2) has significantly
extended the application range of the method.6,7 To further
reduce the cost of the CC2 model, Helmich and Hättig
proposed a local version of CC2 for excitation energies
where they used orbital-specific virtuals (OSVs) and pair
natural orbitals (PNOs) to reduce the dimension of the
virtual orbital space.8 Along the same lines, the local CC
implementation of Kats, Korona, and Schütz uses information
from the coupled cluster singles (CCS) model to select
the relevant occupied LMOs to describe each transition,
combined with projected atomic orbitals (PAOs) for the
virtual space. This strategy was first applied to the CCSD
model and involved local approximations in both the singles
and the doubles amplitudes,9 while the singles amplitudes
were left intact in their local CC2 implementation.10 In a more
recent work,11 they proposed a multistate implementation
relying on a Laplace transformation of the orbital energy
denominators which resulted in an improved description of
the CC2 excitation spectrum.

The multi-level coupled cluster theory of Myhre et al.12,13

is another CC-based method employing a different strategy.
In their methods, the orbital space is partitioned based on
chemical intuition and different CC models are used to treat
different parts of the molecule. In this way, high accuracy
(CCSD, CC3)14,15 can be achieved at a reduced cost by
treating the less important part of the system with CCS and
CC2 models.

In this paper, we present a local framework for calculating
excitation energies (LoFEx) at the CC level of theory with
emphasis on the RI-CC2 model. The overall goal is to
enable the calculation of accurate excitation energies of large
molecular systems by maintaining the CC error control with a
computational cost that can compete against time-dependent
density functional theory (TD-DFT).

0021-9606/2016/144(22)/224106/11/$30.00 144, 224106-1 Published by AIP Publishing.
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In the same way as for most local CC models, the
strategy used by LoFEx is to reduce the dimension of the
orbital space in which the CC equations have to be solved.
As we show in Section II B, this is done by considering a
mixed orbital space composed of NTOs and LMOs for both
the occupied and virtual orbital spaces. Information about the
main characteristics of the electronic transition is included in
the orbital space through the NTOs, while the LMOs enable a
compact description of correlation effects at the CC level. In
order to reduce the dimension of the mixed NTO/LMO space
for the correlated calculation, the LoFEx method considers
only the LMOs in the vicinity of the NTOs. The size of the
orbital space is optimized in a black-box manner such that the
computed excitation energies reproduce the conventional CC
results to a predefined accuracy (cf. Section II C). We note
that restricting both the occupied and the virtual orbital spaces
to a (small) fraction of the total orbital space is a fundamental
requirement for the calculation of excitation energies of (very)
large molecules. LoFEx differs from the aforementioned local
schemes for calculating excitation energies since localized
orthogonal virtual orbitals are used, the local excitation space
of occupied and virtual orbitals is optimized dynamically, and
no many-body expansion of the excitation energy is performed
(as is done in the incremental scheme).

We present numerical RI-CC2 results for the lowest
transitions in a set of organic molecules and analyse the
convergence of excitation energies with the size of the mixed
NTO/LMO space in Section III B. The errors and the cost-
reduction of the black-box LoFEx procedure when compared
to standard RI-CC2 implementations are investigated in
Section III C.

II. THEORETICAL FOUNDATIONS OF LoFEx

Over the last few decades, many theoretical methods and
tools have been developed to calculate excitation energies
and analyse electronic transitions. More recently, the focus
has been directed towards developing algorithms with lower
computational costs. In this section, we present some of those
concepts and describe how we have combined them to develop
the LoFEx procedure.

A. The RI-CC2 model for excitation energies

In this paper, we target excitation energies calculated
at the CC2 level of theory. The CC2 model was introduced
by Christiansen et al.5 as an intermediate model between
the CCS and CCSD models in the CC hierarchy for the
calculation of frequency-dependent properties. The CC2
amplitude equations in the absence of external perturbations
are given by

Ωµ1 = ⟨µ1|Ĥ + [Ĥ ,T2]|HF⟩ = 0, (1)

Ωµ2 = ⟨µ2|Ĥ + [F,T2]|HF⟩ = 0, (2)

where {|HF⟩, |µ1⟩, |µ2⟩} denote the Hartree-Fock (HF) ground
state and the set of singles and doubles excitation manifolds.
F is the Fock operator and Ĥ is a similarity transformed
Hamiltonian,

Ĥ = exp(−T1)H exp(T1), (3)

where Ti =


µi
tµi
τµi

is a cluster operator, tµi
is a cluster

amplitude, τµi
is an excitation operator, and i denotes the

excitation level. In the CC2 model, the doubles amplitudes are
only correct through first order in the fluctuation potential
(Φ = H − F). This approximation leads to a particularly
simple form of the doubles amplitudes, which for closed
shell systems reads

tabi j =
1

(1 + δi jδab)
g̃aib j

ϵ i − ϵa + ϵ j − ϵb , (4)

where i, j (a,b) denote occupied (virtual) CMOs, ϵ p is the
energy associated with orbital p of unspecified occupancy,
and g̃aib j is a T1-transformed two-electron repulsion integral
in Mulliken notation.16 This simple form of the doubles
amplitudes can lead to a CCS-like formulation of the CC2
equations where the doubles amplitudes are calculated on-
the-fly. In order to take full advantage of this formulation
and avoid the storage of any four-index quantity (amplitudes
or integrals), Hättig and Weigend used the resolution of
the identity approximation for the two-electron integrals.6

Batches of doubles amplitudes are then contracted on-the-fly
with three-center integrals to form intermediates that are used
in the CC2 vector function. As shown in Ref. 6, this strategy
can be generalized to the calculation of excitation energies at
the RI-CC2 level. CC excitation energies are usually obtained
as eigenvalues of the CC Jacobian matrix. However, to avoid
storing four-index quantities also in the excitation energy
part of the calculation, an effective CC2 Jacobian has to be
considered,

Aeff(ω)b = ωb, (5)

Aeff
µ1ν1

(ω) = Aµ1ν1 −


γ2

Aµ1γ2Aγ2ν1

ϵγ2 − ω
, (6)

where ω is the excitation energy of interest, b is a singles
excitation vector, and Aµiν j

= ∂Ωµi
/∂tν j

is an element of
the full CC2 Jacobian. The non-linearity in the excitation
energy ω introduced by the effective Jacobian in Eq. (6)
implies that a standard subspace diagonalization procedure
cannot be employed to obtain the RI-CC2 excitation energies.
In practice, we construct the effective Jacobian with an
initial guess for the eigenvalue ω. It is then diagonalized
using standard Davidson techniques,17–19 and the optimized
eigenvalue is used to build a new effective Jacobian until
self-consistency is reached. This process is repeated for each
excitation of interest.7

B. A mixed NTO/LMO space

In order to provide a compact description of electronic
transitions, it is important to work with an optimal orbital space
both for occupied and virtual orbitals. LoFEx is therefore
relying on a mixed orbital representation composed of the
most important pair of NTOs, while the rest of the orbital
space is localized. The dominant pair of NTOs provides
a compact description of the main characteristics of the
transition, while the LMOs enable an efficient description
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of electron correlation effects. In this section, we detail the
generation of the mixed NTO/LMO space.

NTOs are usually generated by singular value decompo-
sition (SVD) of the transition density matrix (bCCS

ai ) between
the HF ground state and an excited state obtained from the
CCS model,3

bCCS
ai = ⟨CCS|τai |HF⟩. (7)

We note for later that NTOs can also be generated at the
correlated level by performing an SVD of the singles excitation
vector (bCC

ai ) only. Our current pilot implementation also
generates NTOs from time-dependent Hartree-Fock theory
(TDHF). The TDHF transition density matrix in the CMO
basis can be expressed as20

bai =
Xai + Yai
|Xai + Yai |


X2
ai + Y 2

ai, (8)

where X and Y are solutions of the TDHF equation for a given
excitation energy ω,

��
A B
B A

�� ��
X
Y
�� = ω ��

1 0
0 −1

�� ��
X
Y
�� . (9)

The transformation matrices from the CMO basis to NTOs are
then obtained by solving the following eigenvalue equations:

b†buk = λkuk, k = 1,2, . . . ,No, (10)bb†vk = λ
′
kvk, k = 1,2, . . . ,Nv, (11)

where No is the number of occupied valence orbitals (in order
to prevent the core and valence spaces from mixing), while
Nv is the number of virtual orbitals. Finally, unitary matrices
transforming to the NTO basis are given by

U = (u1,u2, . . . ,uNo), (12)
V = (v1,v2, . . . ,vNv), (13)

for occupied and virtual orbitals, respectively. Note also
that λk ≡ λ ′k for k = 1,2, . . . ,No, and that λ ′

k
= 0 for k =

No + 1, . . . ,Nv, assuming No ≤ Nv. The first No eigenvalues
give information about the importance of a given pair of
occupied-virtual NTOs for the description of the transition
represented by b. For excited states dominated by single-
electron replacements—which we are targeting in this paper—
this procedure results in one occupied-virtual pair of NTOs
with a singular value very close to one, while the remaining
NTOs have much smaller singular values and thus provide
little information about the electronic transition. We therefore
choose to keep only the dominant pair of NTOs, while
the rest of the orbital space is localized to enable a
compact description of electron correlation effects in the
CC part of the calculation. Different localization techniques
have been investigated, including Boys localization21,22 and
minimization of the second power of the second23 and fourth24

moments of the orbitals. No significant differences in the
results presented in Section III were observed and we have
therefore chosen a minimization of the second power of the
second moment of the orbitals which is known to provide
a good compromise between computational cost and spatial
locality.25 It is also important to emphasize that the use of
NTOs makes the orbital space specific to a given transition,

FIG. 1. Schematic representation of the generation of the mixed orbital space.
U and V represent the valence and virtual transformation matrices [Eqs. (12)
and (13)], while C, U, and V are transformation matrices to the local basis for
core, valence, and virtual orbitals, respectively, excluding the dominant pair of
NTOs. White: canonical molecular orbitals (CMOs); gray: natural transition
orbitals (NTOs); stripes: Localized molecular orbitals (LMOs).

the one associated with the transition density matrix used to
generate the set of NTOs. A different mixed orbital space
should thus be constructed for each transition of interest.
The generation of the mixed orbital space is summarized in
Fig. 1.

C. Space optimization procedure

Once the full orbital space has been transformed to the
mixed orbital space to enable an efficient description of the
transition process, we need to build and optimize a reduced
excitation orbital space (XOS) where the RI-CC2 calculation
is carried out to provide the target excitation energy to a
predefined accuracy. The main character of the excitation is
described by the dominant pair of NTOs already included in
the mixed orbital space. The XOS should thus be constructed
by considering the dominant NTOs as well as a reduced set
of important LMOs. We therefore setup a priority list of all
LMOs ordered based on their estimated importance for the
description of correlation effects in the vicinity of the NTOs.
The importance of a given LMO p (occupied or virtual) is
evaluated by the effective distance r̃p given by

r̃p = min
A

��
rAp

QNTO,o
A

,
rAp

QNTO,v
A

�� , (14)

where index A denotes atomic centers, rAp corresponds to
the distance between the center of charge of a local orbital p
and atomic center A, and QNTO,o

A
and QNTO,v

A
are the Löwdin

atomic charges of the occupied and virtual NTOs on center
A, respectively. The Löwdin atomic charges of the NTOs
(with values between 0 and 1) are used to modify the rAp

distance in Eq. (14) as an attempt to quantify the distance
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between the LMOs and the NTOs, even in the case where
the NTOs are delocalized over several atomic centers. The
smaller the modified distance r̃p is, the more important orbital
p is expected to be.

A first guess for the XOS (XOS1) is constructed by
including the NTOs as well as a given number of LMOs
from the priority list defined by Eq. (14). The standard RI-
CC2 amplitude and Jacobian eigenvalue equations are then
solved as described in Section II A, except that the excitation
manifold is restricted to XOS1 instead of the full orbital space.
For simplicity, the Fock matrix is diagonalized in XOS1
to solve the RI-CC2 equations in a pseudo-canonical basis.
Because of the restriction on the orbital space, the ground state
correlation energy associated with the RI-CC2 amplitudes
is meaningless and therefore not calculated. However, the
excitation energy obtained by diagonalization of the Jacobian
in XOS1 corresponds to a first estimate of the exact RI-CC2
value (in the full orbital space). The quality of this estimate is
of course strongly dependent on the size of XOS1 and on the
nature of the excitation.

In order to provide accurate excitation energies in a
black-box manner, an optimization of the XOS is required.
To this end, XOS2 is constructed by including more orbitals
based on the priority list defined by Eq. (14). The correlated
calculation is then carried out in XOS2 (solution of the RI-CC2
amplitude and Jacobian eigenvalue equations), and the new
excitation energy is compared to the previous one. The orbital
space is considered converged when the difference between
two subsequent excitation energies is smaller than a given
threshold (τXOS). The whole procedure is described step by
step in Algorithm 1 and summarized schematically in Fig. 2.
Default values for the main LoFEx threshold (τXOS) and the
number of orbitals added to the XOS in each iteration will be
discussed in Section III.

FIG. 2. Schematic representation of the generation of the excitation orbital
space (XOS) in LoFEx. The orbitals in the mixed orbital space (left box) are
reordered (middle box) according to the measure in Eq. (14), and the XOS
(right box) used for the calculation of CC excitation energies is optimized
as detailed in Algorithm 1. Gray: natural transition orbitals (NTOs); stripes:
Localized molecular orbitals (LMOs).

A couple technical complications arise from the simple
procedure described so far. The first issue concerns the
computation of several excitation energies. The Davidson
algorithm usually employed for such eigenvalue problems
converges to the lowest excitation energies present in the
subspace.17–19 However, if one is interested in the two lowest
transitions for a given system, the mixed orbital spaces in
LoFEx will be different for each transition, and consequently,
the XOSs for the two transitions will also be different and
might not even overlap. This means that in the calculation
of the second excitation energy, depending on the size of the
XOS, the second transition might correspond to the first or
the second Jacobian eigenvalue.

In order to circumvent this issue, we employ a
projection strategy where, for a given transition k, all
previously optimized excitation vectors {b1

opt,b2
opt, . . . ,bk−1

opt }
are projected out of the Davidson subspace. This prevents
the optimized vector for transition k from collapsing into one
of the previous solutions. Because the previously optimized
excitation vectors are determined in different XOSs, they need
to be transformed to the current mixed orbital space and
projected onto the current XOS. As a consequence, the set
of previously optimized vectors is usually not orthonormal in
the current XOS and a given trial vector bi in the Davidson
algorithm needs to be orthonormalized with respect to the
previous excitation vectors using

bi ← (1 − P)bi, (15)

P =
k−1

j=1

k−1

l=1

b j
opt[S−1] jl(bl

opt)T, (16)

Sjl = (b j
opt)Tbl

opt, (17)

where all quantities are expressed in the current mixed orbital
space as well as restricted to the current XOS. Because of the
difference in dimensions between the different XOSs, a given
excitation vector might have only very small components in
the current XOS (e.g., if the current and old transitions occur
in different extremities of the molecular system). In such a
case the excitation vector is discarded from the set of k − 1
previous vectors to avoid problems in the inversion of the
overlap matrix S.

One possible complication is that the lowest state in
the Davidson subspace (after projection) might not have any
resemblance with the TDHF state used to calculate NTOs
(e.g., in cases where the TDHF and CC2 spectra differ
significantly). The current mixed orbital space is then ill-
suited to describe the CC2 transition of interest. This issue
can be fixed by recalculating NTOs from the optimized CC2
singles excitation vector (bCC2) obtained in the current XOS.
This is done whenever

|bTbCC2| < τoverlap, (18)

where b is the last starting guess (usually from TDHF) and
τoverlap is fixed to 0.5 for normalized vectors. A new mixed
orbital space is then generated using CC2 NTOs and the
optimization procedure is restarted as shown in step 12 of
Algorithm 1.
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ALGORITHM 1. LoFEx pseudo-algorithm, where τXOS is the main threshold controlling the accuracy of the
final excitation energies.

1: Solve TDHF problem for the n target excitation energies: ω1, . . ., ωn.
2: for state i = 1,n do
3: Generate mixed orbital space using bi (cf. Fig. 1).
4: Build XOS1 based on distance measure [Eq. (14)].
5: Solve RI-CC2 amplitude and Jacobian equations in XOS1 and get ω(1)

i .
6: j← 1
7: repeat
8: j← j +1
9: Increase orbital space based on distance measure [Eq. (14)] and get XOS j.

10: Solve RI-CC2 amplitude and Jacobian equations in XOS j and get ω( j)
i .

11: until |ω( j)
i −ω( j−1)

i | < τXOS

12: if |bT
i bCC2

i | < τoverlap then bi← bCC2
i and go to step 3.

13: Store optimized excitation energy, ωi←ω
( j)
i .

14: end for

A second issue concerns the number of atomic orbitals
(AOs) needed to describe the molecular orbitals of the XOS.
Indeed, both local orbitals and NTOs are constructed as linear
combinations of AOs and have in principle small but non-zero
coefficients on atoms far from their center of charge. As
a consequence, even a small XOS would result in many
two-electron integrals to be calculated in the AO basis and
would destroy the performance of the method. We therefore
reduce the number of AOs { χµ} involved in the construction
of a given MO φp,

φp =


µ

χµcµp, (19)

by introducing a modified MO φ̄p according to

φ̄p =


µ̄

χ µ̄c̄µ̄p, (20)

where the summation over AO indices, µ̄, has been restricted
to a subset of AOs { χ µ̄}. This restriction is done based
on the Löwdin charges of orbital p and the coefficients c̄µ̄p
are determined such that φ̄p resembles the true MO φp as
much as possible in a least square sense. The details about
this procedure are described in Ref. 26 in the context of the
divide–expand–consolidate local CC framework. Similarly,
in connection with the RI approximation only a subset of
auxiliary basis functions are considered, as described in
Ref. 27.

III. NUMERICAL ILLUSTRATIONS

In this section, we present proof of concept calculations
to support the theoretical foundations developed in Section II.
We first investigate the convergence of excitation energies
with the size of the XOS and then proceed to the application
of the LoFEx algorithm as a black-box method.

A. Molecules and computational details

In Section III B we consider the following test molecules
which have been optimized at the RI-MP228/cc-pVTZ(cc-
pVTZ-RI) level of theory:

• caprylic acid,
• lauric acid,
• palmitic acid,
• 15-oxopentadecnoic acid (15-OPDA), and
• Dec-1,3,5,7,9-pentaene (C10H12).

For the application of LoFEx in Sections III C and III D, the
above set is augmented with the following molecules:

• prostacyclin,
• an α-helix composed of 8 glycine residues (α-Gly8),
• leupeptin,
• latanoprost,
• metenkephalin, and
• Phenothiazine-isoalloxazine dyad (dyad).

Those larger molecules were optimized at the RI-MP2/cc-
pVDZ(cc-pVDZ-RI) level of theory. All geometry optimi-
zations were performed using the ORCA program29 and
Cartesian coordinates are available in the supplementary
material.30

For the computation of vertical singlet excitation energies,
the cc-pVDZ(cc-pVDZ-RI) basis sets were used on the
hydrogen atoms, while diffuse functions were added to the
other atoms via the aug-cc-pVDZ(aug-cc-pVDZ-RI) basis
sets.31–33 We denote this combination of basis sets with
a prime (aug-cc-pVDZ′). For the calculations on the dyad
system in Section III D, the cc-pVDZ(cc-pVDZ-RI) basis
sets were used without adding diffuse functions. The frozen
core approximation was used in all calculations. The LoFEx
algorithm as described in Section II has been implemented
in a local version of the LSD program.34,35 The RI-CC2
algorithm used in LoFEx relies on a self-consistent Davidson
algorithm7 where the norm of the residual is converged below
τresidual = 10−4 a.u. and the self-consistent energy threshold is
set to τexc = 10−4 a.u. (≃2.7 meV). This last parameter should
not be confused with the main LoFEx threshold, τXOS which
will be specified in the following investigation. In practical
applications of LoFEx, it is of course important to have
τXOS ≥ τexc.
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B. Convergence of excitation energies

1. Saturated fatty acids

For analysis purposes, we consider the lowest transition
in a set of saturated fatty acids with a chain of 8 (caprylic acid),
12 (lauric acid), and 16 (palmitic acid) carbon atoms. Fatty
acids are simple systems, for which the lowest excitation is
known to be localized on the carboxyl group. It is therefore a
typical case where a canonical CC calculation of the excitation
energy is unnecessarily expensive, since most of the carbon
chain does not affect the transition. In order to confirm
this statement, we examined the convergence of the lowest
excitation energy with the size of the XOS in LoFEx. A fixed
number of orbitals were added to the XOS in each LoFEx
iteration based on the priority list defined by Eq. (14) and
the convergence threshold for the excitation energy (τXOS)
was set to zero, such that the full orbital space is included in
the last iteration, which therefore provides the target RI-CC2
excitation energy.

In Fig. 3, we have plotted the dominant pair of TDHF
NTOs for the lowest transition of the caprylic, lauric,

FIG. 3. Occupied (top) and virtual (bottom) TDHF natural transition or-
bitals (NTOs) for the lowest transition of saturated fatty acids using the
aug-cc-pVDZ′ basis set. The contour plot value was set to 0.02 a.u.36,37 (a)
Caprylic acid. (b) Lauric acid. (c) Palmitic acid.

and palmitic acids. These plots clearly support our initial
expectation that — at least at the TDHF level — the transition
of interest is localized on the carboxyl group and the carbon
chain has no important effects on the main characteristics of
the electronic transition. This is confirmed at the RI-CC2 level
by the plots presented in Fig. 4, which illustrate the effects of
the size of the XOS on the excitation energy when MOs are
included based on the priority list defined by Eq. (14). It shows
a fast and smooth convergence towards the standard RI-CC2
excitation energy. In particular, the error in the excitation
energy is below 0.01 eV for all three systems already when

FIG. 4. Convergence of the lowest excitation energy of the caprylic, lauric,
and palmitic fatty acids using the aug-cc-pVDZ′ basis as a function of the
size of the excitation orbital space (XOS) when MOs are included based on
the priority list defined by Eq. (14). The last points of the curves and the
dotted horizontal lines correspond to the reference RI-CC2 values (complete
orbital space).

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  130.225.21.22 On: Fri, 10 Jun
2016 13:09:47



224106-7 P. Baudin and K. Kristensen J. Chem. Phys. 144, 224106 (2016)

less than 230 MOs are included in the orbital space (third point
in the curves). This demonstrates that a significant amount
of computational resources can be saved for such small but
simple systems.

2. 15-oxopentadecanoic acid (15-OPDA)

As a complement to this preliminary investigation, we
now consider the three lowest excitation energies of the
15-oxopentadecanoic acid (15-OPDA). By looking at the
dominant TDHF NTOs of the three transitions in Fig. 5, it
is seen that the lowest and third transitions of 15-OPDA are
localized on the aldehyde group, while the second lowest
transition occurs on the carboxyl group at the other end of
the carbon chain. This system is thus a good candidate to
test the projection strategy presented in Section II C. The
same analysis as before is performed by including a fixed
number of orbitals to the XOS until the complete orbital
space is included, and this is done independently for the three
transitions of interest.

FIG. 5. Occupied (top) and virtual (bottom) TDHF natural transition orbitals
(NTOs) for the three lowest transitions of 15-oxopentadecanoic acid (15-
OPDA) using the aug-cc-pVDZ′ basis set. The contour plot value was set to
0.02 a.u.36,37 (a) Dominant pair of NTOs for S1. (b) Dominant pair of NTOs
for S2. (c) Dominant pair of NTOs for S3.

The challenge of computing several excitation energies
can be exemplified as follows: when computing the second
lowest transition on the carboxyl group of 15-OPDA, the
first XOS (XOS1) will not include any component of the
lowest excitation vector on the aldehyde group. The standard
Davidson procedure would therefore provide the excitation
energy of interest (the second lowest for the whole system)
by converging to the lowest Jacobian eigenvalue. However, if
the XOS corresponds to the complete orbital space, the lowest
eigenvalue obtained with the standard Davidson procedure
would most likely be the lowest transition on the aldehyde
group. The projection strategy described in Section II C is
therefore necessary to ensure that the excitation vector is not
collapsing to the lowest transition as the XOS is increased.

In Fig. 6, we have plotted the three lowest excitation
energies of 15-OPDA against the size of the XOS. It is
important to emphasize that the three excitation energies on a
specific vertical line in Fig. 6 are determined in different and
independent XOSs that contain the same amount of orbitals.
The curves in Fig. 6 show a smooth convergence behaviour
for all three excitation energies without ever collapsing to
another transition which shows that the projection strategy
presented in Section II C is enough to ensure convergence to
the desired excitation energies. Fig. 6 also shows that the two
lowest excitation energies of 15-OPDA converge as fast as
the lowest excitation energy of the fatty acids in Fig. 4, while
the convergence of the third excitation energy is significantly
slower. This is due to the more diffuse character of the third
transition (cf. Fig. 5(c)) which is rather poorly described in
the small aug-cc-pVDZ′ basis.

3. Dec-1,3,5,7,9-pentaene (C10H12)

Electronic transitions are not always as local as for the
systems treated so far. In some interesting cases, the excitation

FIG. 6. Convergence of the three lowest excitation energies of the 15-
oxopentadecanoic acid (15-OPDA) using the aug-cc-pVDZ′ basis as a func-
tion of the size of the excitation orbital space (XOS) when MOs are included
based on the priority list defined by Eq. (14). The last points of the curves
and the dotted horizontal lines correspond to the reference RI-CC2 values
(complete orbital space).
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can be spread over a large part of the molecule, for example,
due to electronic delocalization in conjugated systems or in
the case of charge-transfer (CT) transitions. Such examples
would necessarily require a larger XOS and in some special
cases the complete orbital space needs to be included. To
illustrate further the impact of the character of the transition
on the size of the XOS, we have applied LoFEx to the C10H12
conjugated molecule. The TDHF NTOs plotted in Fig. 7 show
that the first transition of C10H12 is delocalized over the whole
system. Fig. 8 represents the decay of the lowest excitation
energy of C10H12 with the size of the XOS. As expected, the
convergence is stable but much slower than for the systems
analyzed previously. For this small molecule, the complete
orbital space has to be included in the XOS to reproduce
the standard RI-CC2 result, but we can expect that for larger
systems, even if the NTOs are delocalized over a part of the
molecule, computational savings should still be possible by
ignoring all parts of the system not affected by the transition.
In short, C10H12 represents a worst case scenario for LoFEx
and no computational savings can be obtained. Nonetheless,
as we shall see in Section III C, the standard RI-CC2 excitation
energy is still obtained by the black-box LoFEx algorithm.

4. Convergence behaviour

Finally, we note that, for all examples treated in this
section, the excitation energies are systematically lowered
when the dimension of the XOS increases. This behaviour
is also usually observed in basis set convergence studies
of excitation energies,38,39 and can be partly explained by
Cauchy’s interlacing theorem.40,41 Part of Cauchy’s theorem
states that, for a symmetric matrix, the eigenvalues ωB1

k

obtained with a basis {B1} will always be larger than the
corresponding eigenvalues ωB2

k
obtained with a basis {B2}

when {B1} ⊂ {B2} (i.e., ωB1
k
≥ ωB2

k
for each eigenvalue k).

This is for example the case in the configuration interaction
(CI) excitation energy problem where a symmetric matrix has
to be diagonalized. However, it does not strictly hold in CC
theory, partly because the Jacobian matrix is not Hermitian
and therefore the eigenvalue problem is not ensured to have
(real) solutions, but also because the Jacobian matrix depends
on the CC amplitudes which are different from one basis to
another meaning that the Jacobian in the basis {B1} is not
a true submatrix of the Jacobian in the {B2} basis. In spite

FIG. 7. Occupied (top) and virtual (bottom) TDHF natural transition orbitals
(NTOs) for the lowest transition of dec-1,3,5,7,9-pentaene (C10H12) using the
aug-cc-pVDZ′ basis set. The contour plot value was set to 0.02 a.u.36,37

FIG. 8. Convergence of the lowest excitation energy of dec-1,3,5,7,9-
pentaene (C10H12) using the aug-cc-pVDZ′ basis as a function of the size
of the excitation orbital space (XOS) when MOs are included based on the
priority list defined by Eq. (14). The last point of the curve and the dotted
horizontal line correspond to the reference RI-CC2 value (complete orbital
space).

of these formal differences between CI and CC, we have
always observed that the energies are lowered when the XOS
is increased, indicating that in practice, Cauchy’s theorem
effectively holds also for the CC Jacobian. This feature is
important in the context of LoFEx since it lowers the risk of
premature convergence when the excitation energies of two
subsequent XOSs are compared (step 11 in Algorithm 1).

C. LoFEx as a black-box method

It has now been demonstrated with simple examples that
the method described in Section II can lead to significant
savings. In this section we apply LoFEx as a black-box
method and provide default parameters for the optimization
procedure that result in accurate excitation energies using a
reduced orbital space. The main challenge here is to find
the number of orbitals to add to the XOS between two
iterations, such that it is large enough to avoid premature
convergence and small enough to prevent the XOS from
becoming unnecessarily large. This quantity needs to be
conservative as the convergence rate of the excitation energies
with the size of the XOS is strongly dependent on the
nature of the transitions and the chemical structure of the
molecules and premature convergence could in principle occur
in some difficult cases. In this investigation, the number of
orbitals added to the XOS in each LoFEx iteration was set
to ten times the average number of MOs per atom (i.e.,
10 × NMO/Natom) and the main LoFEx threshold was chosen
to be τXOS = 0.02 eV. The number of orbitals added has been
chosen based on a series of tests and seems like a conservative
choice but more extensive testing of LoFEx will tell if this
value is optimal. The LoFEx threshold (τXOS) is more of a
tunable parameter and depends on the required accuracy. A
value of 0.02 eV is conservative and is expected to provide
excitation energies of standard CC2 quality (CC2 is known
to result in excitation energies where the typical errors are an
order of magnitude larger).6,38,39,42
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In Table I we report the RI-CC2-LoFEx excitation
energies as well as measures of the size of the converged XOS
and the number of LoFEx iterations (the number of different
XOSs considered) for all molecules presented in Section
III A. Speed-ups of LoFEx compared to canonical RI-CC2
implementations are also reported. For calculations containing
more than one transition, the current RI-CC2 implementation
in the LSD program does not allow for fair comparisons.
Speed-ups are therefore not reported for those cases.

Comparison with canonical RI-CC2 energies — available
in the supplementary material30 — results in errors in the
LoFEx excitation energies below 0.01 eV for all molecules.
This indicates that the LoFEx parameters chosen above are
conservative enough to provide excitation energies of CC2
quality and to avoid false convergence. Concerning the size of
the optimized XOS and the reduction in computational cost,
one can see from Table I that it is strongly dependent on
the nature of the electronic transition and on the size of the
molecular system. However, even when the full orbital space
has to be included in the XOS (e.g., S1 of prostacyclin), the last
RI-CC2 calculation will in general be time-dominating and
the overall cost is of the same order as for canonical RI-CC2
calculations (for C10H12 with a speed-up of 0.43, the system is
so small that the full calculation is very fast anyway). On the
other hand, significant savings are usually obtained when the
LoFEx algorithm converges in only two or three iterations.
For example, a LoFEx calculation of the lowest transition of
metenkephalin provides a speed-up of almost 60, which is
already very large, but even larger speed-ups are expected
for larger molecules with local transitions. Comparison of
the size of the XOS in Table I with the convergence of the
excitation energies represented in Figs. 4 and 6 shows that
the black-box method often provides too large XOS. This is

due to the structure of the algorithm where the penultimate
step is actually converged but requires an additional iteration
to check for convergence. This is also the reason for the
exceptionally low errors.

D. A difficult case: The phenothiazine-isoalloxazine
dyad

As reported by Kats and Schütz in Ref. 11, the few
lowest transitions of the phenothiazine-isoalloxazine dyad
are particularly difficult to describe at the CC2 level and
especially with local approximations. The problem originates
from the very poor starting guess that non-correlated methods
(CCS/TDHF) provide for the CC2 calculation in that particular
case. This observation could indicate that CC2 is not
appropriate for describing the electronic spectrum of this
molecule and that larger basis sets (double-zeta basis sets
were used) as well as higher level models (CCSD or CC3)
might provide significantly different results. However, it is
interesting to see how the LoFEx method is performing
with such a difficult case. In particular, one of the lowest
transitions of the dyad is known to exhibit a CT character
which is challenging for many computational methods and in
particular for TD-DFT.

The five lowest excitation energies of the dyad have been
calculated using LoFEx and are reported in Table I. We note
that the error in the excitation energies is as low as for the
other systems (below 0.01 eV) but that due to the complexity
of the transition, the full molecular orbital space has to be
included in the XOS for all but the first transition. It is also
important to note that for those states (S2,S3,S4, and S5), CC2
NTOs were calculated in the course of the calculation because
the overlap with the starting guess was below τoverlap = 0.5 [cf.

TABLE I. Excitation energies from RI-CC2-LoFEx (ωLoFEx) and size of the XOS given by the fraction of the
complete set of MOs and AOs included in the XOS. The number of iterations used in LoFEx (number of different
XOSs considered) as well as speed-ups compared to canonical RI-CC2 calculations is also reported. All the
calculations have been done using the aug-cc-pVDZ′ basis set (except for the dyad which uses cc-pVDZ) and the
frozen core approximation. The main LoFEx threshold was set to τXOS= 0.02 eV.

System State ωLoFEx
a % MOs % AOs No. iterations Speed-up

Caprylic acid S1 6.06 82.3 94.8 2 1.11
Lauric acid S1 6.05 83.9 96.2 3 3.49
Palmitic acid S1 6.06 63.5 72.6 3 4.55
15-OPDA S1 4.44 46.1 57.0 2 . . .

S2 6.06 46.5 52.3 2 . . .
S3 6.19 100 100 5 . . .

C10H12 S1 4.09 100 100 3 0.43
Prostacyclin S1 4.98 92.3 99.6 5 0.98
α-Gly8 S1 5.42 71.6 93.4 4 1.81
Leupeptin S1 4.27 46.7 91.0 3 7.08
Latanoprost S1 5.08 44.7 58.5 3 8.12
Metenkephalin S1 4.78 42.3 48.9 3 58.9
Dyad S1 3.10 82.3 88.7 4 . . .

S2 3.47 100 100 8b . . .
S3 3.51 100 100 6b . . .
S4 3.71 100 100 6b . . .
S5 4.06 100 100 6b . . .

aAll errors in the LoFEx excitation energies with respect to canonical RI-CC2 values are below 0.01 eV.
bExtra iterations due to the calculation of CC2 NTOs.
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Eq. (18) and the associated discussion]. This did not occur for
any of the other molecules in Table I and it is a confirmation of
the difference between the optimized TDHF and CC2 states.
In general, we have observed that the use of CC2 NTOs does
not reduce the size of the optimized XOS which is why CC2
NTOs are only used when the TDHF NTOs do not represent
properly the transition of interest. With the geometry of the
dyad used in this paper (which is different from the one used in
Ref. 11), the CT transition corresponds to the fourth excitation
energy and is properly described with LoFEx. However, with
the parameters used in the black-box algorithm, it does require
that the XOS contains the full orbital space, and consequently,
no savings are obtained.

Even though the full orbital space is included for most of
the transitions of the dyad, this application of LoFEx shows
that the method provides correct CC2 results even for difficult
cases such as CT transitions. We also note that significant
savings are expected if the dyad is considered in a larger
environment (e.g., including solvent).

IV. CONCLUSION AND PERSPECTIVES

We have introduced the LoFEx approach for the
calculation of vertical CC excitation energies where the CC
amplitude and Jacobian eigenvalue equations are solved in a
transition-specific reduced orbital space (the XOS) composed
of NTOs and LMOs. The method can be used as a black-box
where the error in the excitation energies is controlled by
a single parameter (τXOS). LoFEx was tested on a set of
molecules, including small and simple systems as well as
larger and more real-life compounds. It was demonstrated
at the RI-CC2 level that significant savings can be obtained
without loss of accuracy. The computational cost of the method
is dominated by the last RI-CC2 calculation using the largest
XOS and is expected to be constant with the system size for
a given type of transition. For large enough systems, and in
particular when the excitation of interest is local compared
to the size of the molecule, the cost of the method will be
dominated by the underlying TDHF calculation on the full
system, resulting in excitation energies of CC2 quality with a
computational cost comparable to TD-DFT.

LoFEx relies on TDHF to provide a qualitatively
correct description of the excitation process, i.e., the main
characteristics of the transition should be described by the
NTOs built from the TDHF transition density matrix. If the
TDHF and CC2 spectra are significantly different, CC2 NTOs
are constructed in the course of the calculation. This results
in a more appropriate mixed orbital space which improves
the description of the CC2 spectrum. We have shown that
LoFEx can handle the description of complex electronic
spectra exemplified with the phenothiazine-isoalloxazine dyad
molecule for which the CT transition was described properly.
This was however achieved without cost-reduction and a
more elaborate algorithm is required to achieve that goal.
Future works will thus be focused on the development of a
more efficient RI-CC2 algorithm and on improving the orbital
space optimization procedure together with more extensive
testing of LoFEx. The calculation of transition moments and
oscillator strengths will also be investigated.

The LoFEx procedure can in principle be straight-
forwardly applied to more accurate CC models (CCSD,
CC3, etc.). However, the size of the XOS needed for
a proper description of most transitions would probably
prevent most practical applications without introducing
further approximations on the underlying CC models. The
dependence on the NTOs could also be an issue if CCSD or
CC3 are used to describe doubles dominated transitions, and
a generalization of the LoFEx strategy would be necessary.

LoFEx is conceptually and practically simple and can
be seen as a general framework to select and optimize
the orbital spaces needed to provide accurate descriptions
of electronic transitions. For a given XOS of orthogonal
occupied and virtual orbitals provided by the LoFEx scheme,
any single reference CC code can be applied. We could,
for instance, imagine combinations with PNO algorithms to
further reduce the cost of the solution of the CC equations.8

Another possibility is to combine LoFEx with hybrid quantum
mechanics and molecular mechanics (QM/MM) techniques,
like the polarizable-embedding approach,43,44 where a large
quantum mechanical part could be treated by LoFEx, while
the environment effects would be described at the molecular
mechanics level.
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ABSTRACT
The recently developed Local Framework for calculating Excitation energies (LoFEx) is extended
to the coupled cluster singles and doubles (CCSD) model. In the new scheme, a standard CCSD
excitation energy calculation is carried out within a reduced excitation orbital space (XOS), which
is composed of localised molecular orbitals and natural transition orbitals determined from time-
dependent Hartree–Fock theory. The presented algorithm uses a series of reduced second-order
approximate coupled cluster singles and doubles (CC2) calculations to optimise the XOS in a black-
box manner. This ensures that the requested CCSD excitation energies have been determined to a
predefined accuracy compared to a conventional CCSD calculation. We present numerical LoFEx-
CCSD results for a set of medium-sized organic molecules, which illustrate the black-box nature of
the approach and the computational savings obtained for transitions that are local compared to the
size of the molecule. In fact, for such local transitions, the LoFEx-CCSD scheme can be applied to
molecular systems where a conventional CCSD implementation is intractable.

1. Introduction

Molecular properties form a direct link between funda-
mental quantum mechanical equations and experimen-
tal measurements. The development of accurate theo-
retical methods for determining molecular properties is
thus of great importance for the advancement of molec-
ular sciences. Coupled cluster (CC) theory [1,2] is con-
sidered the method of choice for high accuracy cal-
culations on small molecular systems dominated by a
single configuration. For ground state energies and static
properties, one often considers a CC hierarchy of wave
function models—MP2 [3] (second-order Møller-Plesset
perturbation theory), CCSD [4] (coupled cluster singles

CONTACT Pablo Baudin pablo.baudin@chem.au.dk

and doubles), CCSD(T) [5] (coupled cluster singles and
doubles with perturbative triples), etc.—in which the
accuracy of the calculated properties is systematically
improved. For frequency-dependent molecular proper-
ties, including excitation energies, one often relies on
response theory [6–10] and the CC response hierar-
chy containing the CC2 [11] (second-order approxi-
mate coupled cluster singles and doubles), CCSD [12],
CC3 [13] (approximate coupled cluster singles, dou-
bles, and triples), etc. models has proven to be suc-
cessful [14]. Other CC models have been designed
for the calculation of frequency-dependent properties,
mainly based on the equation-of-motion (EOM) formal-
ism [15–18]. For second-order models we mention the
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EOM-MBPT2 [19,20] and the algebraic diagrammatic
construction (ADC(2)) [21] models. A series of triples
corrected models have also been designed for the calcu-
lation of excitation energies [22–25].

In conventional implementations, the computational
scalings of the CC2, CCSD and CC3 models are N5, N6

and N7, respectively, where N is a measure of the size
of the system. These scalings inhibit the practical appli-
cations of the CC models to large molecular systems of
interest in contemporary molecular sciences. The corre-
lated CC calculation primarily describes local electron
correlation effects, such as the short-ranged electron–
electron repulsion effects (the Coulomb hole in the wave
function) and dispersion effects. The steep scaling of
the CC methods—both with respect to time and mem-
ory requirements—stems from the fact that conven-
tional CC implementations are expressed in terms of the
highly nonlocal canonical molecular orbitals (CMOs),
which makes a local description of electron correla-
tion effects impossible. Due to the scaling problems
of the CC models, many practical applications today
use time-dependent density functional theory (TDDFT),
which can be applied to rather large molecular sys-
tems. Although DFT calculations have lower computa-
tional costs and often provide useful insights, it is well
known that DFT has several limitations [26], including
the description of doubly excited states, Rydberg states,
and charge-transfer excitations in extended systems [27].

As an alternative to TDDFT calculations, several
CC approaches for calculating excitation energies with
reduced costs have been suggested. The most com-
mon strategy, pioneered by Pulay and Saebøfor ground
state energies [28,29], consists in reducing the number
of wave function parameters by generating a localised
orbital space. The occupied orbitals are localised and
kept orthogonal, while the virtual space is transformed
to non-orthogonal projected atomic orbitals (PAOs) [30–
33] or pair natural orbitals (PNOs) [34–36]. An alterna-
tive approach proposed in the context of the incremental
scheme is based on a many-body expansion of the CCSD
excitation energies [37]. Furthermore, in multi-level CC
theory [38–40] the orbital space is partitioned based on
chemical intuition, and different CC models are used to
treat different parts of the molecule to achieve a reduced
cost by treating the less important part of the system with
the less demanding CC models.

We have recently introduced a local framework for
calculating excitation energies (LoFEx) at the CC2 level
of theory [41]. In the LoFEx scheme the occupied and
virtual CMOs are transformed into a mixed orthogonal
orbital space composed of natural transition orbitals [42]
(NTOs) and localised molecular orbitals [43,44] (LMOs)
for both the occupied and virtual orbital spaces. For

transitions dominated by single-electron replacements
(which are targeted in this paper) the mixed orbital space
contains the dominant pair of occupied-virtual NTOs,
while the remaining orbitals are localised. Conceptually,
the NTOs contain information about the main character
of the electronic transition, while the LMOs allow for an
efficient description of correlation effects. An excitation
orbital space (XOS) is then constructed from the mixed
orbital space by considering the dominant pair of NTOs
as well as a reduced number of LMOs in the vicinity of
the NTOs. The XOS is optimised in a black-box manner
to ensure that the excitation energy is calculated to the
desired precision compared to a conventional CC calcu-
lation. The goal of the present paper is to generalise the
LoFEx algorithm to CC models beyond the CC2 model.
Specifically, we show that the XOS optimisation may be
performed at a lower level of theory than the target CC
model, exemplified here by CC2-based optimisation to
target CCSD excitation energies.

In Section 2, we present an extension of the LoFEx
procedure to the next level of the CC response hierarchy
by devising an algorithm for calculating CCSD excitation
energies [12]. The resulting model is a hybrid approach
where the XOS is determined in a black-box manner by
a series of CC2 calculations, while a single CCSD calcu-
lation is carried out in the final XOS. The algorithm is
designed such that the optimised XOS is as small as pos-
sible, while ensuring that the CCSD excitation energy is
determined to the predefined accuracy. Numerical results
are presented and discussed in Section 3 to support the
theoretical foundations of the LoFEx-CCSD model. We
also note that the present work is a precursor for devel-
oping a LoFEx scheme for the next member of the CC
response hierarchy, i.e. the CC3 model [13].

2. Theory

In Section 2.1, we summarise the determination of exci-
tation energies at the CCSD level of theory, while Section
2.2 is dedicated to the introduction of the new LoFEx-
CCSD algorithm.

2.1. The CCSDmodel for excitation energies

The CCSD ground state amplitude equations in the
absence of external perturbations are given by [4],

�μ1 = 〈μ1| exp(−T )H exp(T ) |HF〉 = 0,
�μ2 = 〈μ2| exp(−T )H exp(T ) |HF〉 = 0, (1)
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where {|HF〉 , |μ1〉 , |μ2〉} denote the Hartree–Fock (HF)
ground state and the singles and doubles excitation man-
ifolds. The cluster operator is given by T = T1 + T2 + …,
where Ti = ∑

μi
tμiτμi denotes a cluster operator where

tμi is a cluster amplitude, τμi is an excitation operator and i
denotes the excitation level.H is the usual non-relativistic
molecular electronic Hamiltonian.

In CC response theory, CCSD excitation energies
ω are determined by solving the CCSD Jacobian
eigenvalue problem [12,45], which may be written in
the form,

Ab = ωb (2)

where the Jacobian is given by,

Aμiν j = ∂�μi

∂tν j

,

= 〈μi| exp(−T )[H, τν j ] exp(T ) |HF〉 (3)

We note that the CCSD Jacobian is nonsymmetric and
that it depends on the ground state amplitudes.

In a conventional CCSD calculation, the formal pro-
cedure for determining excitation energies after the HF
CMOs have been determined is thus to (i) solve Equa-
tion (1) to determine the CCSD ground state amplitudes,
(ii) use these amplitudes to determine the CCSD Jacobian
according to Equation (3) and (iii) obtain the requested
excitation energies by solving the eigenvalue equation in
(2). The CCSD amplitude equations in (1) are non-linear
and are usually solved using a direct inversion of the itera-
tive subspace (DIIS) [46], in our implementation the con-
jugate residual with optimal trial vectors (CROP) [47,48]
method is used since it can often be less memory inten-
sive. The solution of the eigenvalue problem in Equation
(2) on the other hand is usually performed via a sub-
space method such as the Davidson procedure [49] gen-
eralised to nonsymmetric matrices [50]. Both of these
procedures are iterative and scale as N6 with the system
size which prevents their application to large molecular
systems.

2.2. The LoFEx-CCSDmodel

For the determination of CCSD excitation energies that
correspond to transitions localised in space, it is possi-
ble to reduce the scaling of the procedure described in
Section 2.1 such that it becomes independent of the sys-
tem size. This is achieved in the LoFEx-CCSDmodel that
we describe in the remainder of this section.

In the LoFEx scheme, a mixed orbital space contain-
ing a combination of NTOs [42] and LMOs is used to
reduce the dimensions of the CC problems in Equations

(1) and (2). NTOs can be generated from time-dependent
Hartree-Fock theory (TDHF) by performing a singular-
value-decomposition (SVD) of the TDHF transition den-
sity matrix b̃ (see Refs. [41,51] for details). The transfor-
mation matrices U and V required to obtain occupied
valence and virtual NTOs, respectively, are then obtained
by solving the following eigenvalue equations:

b̃†̃buk = λkuk, k = 1, 2, . . . ,No, (4)
b̃̃b†vk = λ′

kvk, k = 1, 2, . . . ,Nv , (5)
U = (u1, u2, . . . , uNo), (6)
V = (v1, v2, . . . , vNv

), (7)

whereNo (Nv) is the number of valence (virtual) orbitals.
Assuming No � Nv, it follows that λk ≡ λ′

k for k = 1, 2,
���, No, while λ′

k = 0 for k = No + 1, ���, Nv. The singu-
lar values λk can be interpreted as ameasure of the impor-
tance of each pair of NTOs for the description of the tran-
sition represented by b̃ [42].

In this paper we consider transitions dominated by
single-electron replacements. In such cases, the SVD of
the TDHF density matrix results in one occupied-virtual
pair of NTOs with a singular value very close to one,
while the remaining NTOs with much smaller singu-
lar values yield little information about the electronic
transition. We therefore keep only the dominant pair
of NTOs, which represents the main character of the
transition, while the rest of the orbital space is localised
to enable a compact description of electron correlation
effects in the CC part of the calculation. For the orbital
localisation we minimise the second power of the sec-
ond moment of the orbitals [43], since this localisa-
tion strategy is known to provide a good compromise
between computational cost and spatial locality [44]. We
stress that the use of NTOs makes the orbital space spe-
cific to a given transition, and a different mixed orbital
space should thus be constructed for each transition of
interest.

For excitations that are local compared to the size of
the molecular system under consideration, the genera-
tion of a mixed NTO/LMO space, as described above,
can lead to significant computational savings by trun-
cating the LMO space. Such a truncated orbital space
containing the dominant pair of NTOs and a subset of
the LMOs is denoted the excitation orbital space (XOS).
The main task of the black-box LoFEx algorithm is to
ensure that the XOS is large enough to result in accurate
excitation energies while remaining as small as possible
such that significant computational savings are obtained.
To achieve this goal we first define an effective distance
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measure r̃p given by,

r̃p = min
A

(
rAp

QNTO,o
A

,
rAp

QNTO,v
A

)
(8)

where QNTO,o
A and QNTO,v

A are the Löwdin atomic charges
for atom A of the occupied and virtual NTOs, respec-
tively, while rAp is the distance from the centre of charge
of the pth LMO to atom A. The scaling of the distance
by the inverse Löwdin atomic charge (values between 0
and 1) enables the definition of an effective distance mea-
sure, also when the NTOs are distributed across several
atomic centres. The LMOs are ordered according to the
distance measure in Equation (8), and the size of the XOS
is increased until the excitation energy of interest has
been determined to a predefined accuracy (τXOS). The
LoFEx algorithm is depicted schematically in Figure 1
and it may be summarised by the followingmain steps:

(1) Carry out a HF ground state calculation on the
whole system to generate a set of occupied and vir-
tual CMOs.

(2) Carry out a TDHF calculation on the whole sys-
tem and generate NTOs by performing an SVD of
the TDHF transition density matrix b̃.

(3) Generate LMOs by localising all orbitals, except
the dominant pair of NTOs.

(4) Order the LMOs according to the measure in
Equation (8).

(5) Determine the optimised XOS:
(a) Choose a subset of orbitals from the ordered

list (defining XOS(1)) and calculate excitation
energy ω(1) for this set of orbitals, i.e. solve
Equations (1) and (2) in XOS(1).

(b) Add a new set of orbitals from the ordered
list of LMOs to the existing XOS(1) to gener-
ate XOS(2). Calculate excitation energy ω(2) in
the new space (XOS(2)) and compare to ω(1).

(c) Continue this procedure until the change in
excitation energy for two subsequent calcula-
tions is smaller than the requested accuracy
(i.e. |ω(n) − ω(n − 1)| < τXOS).

Again, it should be emphasised that steps 2–5 of the
outlined procedure are applied to each transition of inter-
est separately. A more detailed description of the LoFEx
algorithm, including the treatment of several excited
states and reduction of the atomic orbital space used to
expand themolecular orbitals (MOs), is given inRef. [41].

From a conceptual point of view, it should be noted
that the Fock matrix entering the CC equations (as a
part of the Hamiltonian) has been determined in a HF

Figure . Illustration of the LoFEx procedure. Top: Generation of
themixedmolecular orbital space; starting from canonical molec-
ular orbitals (CMOs), U and V represent the valence and virtual
transformation matrices to the natural transition orbital (NTO)
space, while C̃, Ũ, and Ṽ are transformation matrices to the local
basis (LMO) for core, valence, and virtual orbitals, respectively,
excluding the dominant pair of NTOs. r̃p is the effective distance
measure given by Equation (). Bottom: Determination of the exci-
tation orbital space (XOS), where ω(i) is the excitation energy cor-
responding to the ith excitation orbital space (XOS(i)) and τ XOS is
the main LoFEx threshold.
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calculation on the total molecular system and thus con-
tains information about long-range electronic interac-
tions among all electrons in the molecule. Thus, even
though aCC calculationwithin a givenXOS involves only
the dominant pair of NTOs and subset of LMOs, long-
range electronic interactions to the part of the molecule
outside the XOS are still included in an indirect man-
ner via the Fock matrix. Concerning the computational
effort, it can be expected that the cost of the complete
LoFEx calculation will be dominated by the underlying
TDHF calculation on the full system for large systems
if the excitation of interest is local compared to the size
of the molecule. In fact, for such a case, the CC part of
the LoFEx calculation is independent on the size of the
total molecule. This implies that highly accurate excita-
tion energies of CC quality can be obtained with a com-
putational cost comparable to TDDFT.

Any CC model can in principle be used to calculate
excitation energies in step 5 above. However, it is possible
to obtain additional computational savings for the CCSD
model (and for higher level CCmodels) by noting that the
calculation in the final XOS is carried out only to verify
that the previous calculation was indeed converged (see
Figure 1). Thus, the penultimate CC calculation is already
accurate enough with respect to τXOS, while being much
cheaper than the final XOS calculation due to the sixth-
order scaling of the CCSD model. It is therefore possible
to devise a LoFEx-CCSD scheme, where the XOS opti-
misation procedure in Figure 1 is carried out using the
cheaper CC2 model to determine the penultimate XOS
(XOS(n − 1) in Figure 1), followed by a single CCSD cal-
culation in XOS(n − 1). This new LoFEx-CCSDmodel can
be summarised as follows (a superscript has been added
to emphasise the model used to calculate the excitation
energy):

(1) CC2 optimisation:� CC2 calculation in XOS(1) to calculate ω
(1)
CC2.� CC2 calculation in XOS(2) to calculate ω
(2)
CC2.� …� CC2 calculation in XOS(n − 1) to calculate

ω
(n−1)
CC2 .� CC2 calculation in XOS(n) to calculate ω

(n)
CC2,

concluding that |ω(n)
CC2 − ω

(n−1)
CC2 | < τXOS.

(2) CCSDcalculation inXOS(n − 1) to calculateω
(n−1)
CCSD ,

which is the target excitation energy of the calcu-
lation.

The CC2 and CCSD calculations in LoFEx scale with
the fifth and sixth powers of the size of the XOS, respec-
tively. Avoiding the CCSD calculation in XOS(n) with
such a hybrid procedure is thus expected to reduce the

computational effort tremendously. The capacity of the
LoFEx-CCSD model to result in excitation energies of
CCSD quality relies on the single assumption that the
CC2 model provides a good description of the CCSD
electronic transitions. From a theoretical point of view,
this assumption is supported by the fact that the CC2
model may be obtained from the CCSD working equa-
tions by keeping only the terms of the CCSD doubles
equations that are first-order in a Møller–Plesset pertur-
bation expansion, while the singles equations are retained
in their original form [11]. This approximation of the
CCSD doubles equations in the CC2 model leads to the
well-known fact that the CC2 model cannot be used to
accurately describe electronic transitions dominated by
more than one-electron replacements. For that reason,
and because we rely on TDHF NTOs, the LoFEx-CCSD
procedure can only be expected to work properly when
applied to transitions dominated by one-electron replace-
ments.

3. Results

In this section, we present proof-of-concept calculations
to assess the validity of the LoFEx-CCSD model intro-
duced in Section 2.2. Two main questions have to be
addressed; (i) does the LoFEx-CCSD scheme result in
excitation energies of CCSD quality? (ii) Is it computa-
tionally more efficient than a conventional implementa-
tion of the CCSD model?

3.1. Computational details

We consider the following molecules, which are depicted
in Figure 2:� Caprylic acid� Lauric acid� Palmitic acid� 15-Oxopentadecanoic acid (15-OPDA)� Prostacyclin� An α-helix composed of 8 glycine residues (α-Gly8)� Leupeptin� Latanoprost� Met-enkephalin

The geometries have been optimised at the RI-MP2
[53] level of theory using the ORCA program [54]. The
basis sets used for the geometry optimisations and the
Cartesian coordinates are given in Ref. [41] and its sup-
porting information.

We consider calculations of the lowest vertical singlet
excitation energy using the cc-pVDZ and aug-cc-pVDZ’
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Figure . Three-dimensional stick representation of the molecules used in this study [].

basis sets [55,56] where the prime indicates that diffuse
functions have been removed from the hydrogen atoms.
Ideally, basis sets of triple-ζ quality or better should be
used for CCSD excitation energies; however, the use of
the smaller basis sets of double-ζ quality for these proof-
of-concept calculations allows us to carry out the full
(conventional) CCSD calculations for most of the
medium-sized molecules in Figure 2, which would not
be possible using larger basis sets. For the CC2 calcula-
tions that are used to determine the XOS according to the
strategy outlined in Section 2.2, we have used density fit-
ting techniques, i.e. the resolution of the identity, RI-CC2
model [57]. For these calculations, the cc-pVDZ-RI and
aug-cc-pVDZ-RI’ basis sets [58] were used in combina-
tion with the cc-pVDZ and aug-cc-pVDZ’ regular basis
sets. The frozen core approximation was used in all cal-
culations.

A pilot implementation of the LoFEx-CCSD model
described in Section 2.2 has been introduced in a
local version of the LSDalton program [59]. The

parameters defining the XOS optimisation procedure in
Figure 1 (bottom) were set as in Ref. [41], i.e. the main
LoFEx threshold τXOS = 0.02 eV, and the number of
orbitals added to the XOS in each expansion step was set
to 10 times the average number of MOs per atom. Since
this is a conservative choice for the expansion step, we
expect CCSD excitation energies with errors of �0.02 eV
or below compared to a full CCSD calculation. We do
note that τXOS is a tunable parameter which can be cho-
sen according to the desired accuracy. The full CCSD cal-
culations were carried out using the Turbomole program
package [60].

3.2. Results for the LoFEx-CCSDmodel

In Tables 1 and 2 we present the results of the LoFEx-
CCSD model for the molecules presented in Figure 2
using the cc-pVDZ and aug-cc-pVDZ’ basis sets, respec-
tively. We give the lowest excitation energy ω calculated
using LoFEx and the absolute error δω compared to a full
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Table . Results from the LoFEx-CCSD model using the cc-pVDZ
basis. Excitation energiesω (eV); errors compared to full CCSD cal-
culation (eV); number of MOs in LoFEx XOS(n− ) and full calcula-
tions, and estimated speed-ups of the most expensive OV scal-
ing step of the CCSD part of the calculation.

System ω δω #MOs (LoFEx) #MOs (full) Speed-up

Caprylic acid . .   
Lauric acid . .   
Palmitic acid . .   
-OPDA . .   
Prostacyclin . .   
α-Gly . .   
Leupeptin . .   
Latanoprost . .   
Met-enkephalin . –   

Table . Results from the LoFEx-CCSD model using the aug-cc-
pVDZ’ basis. Excitation energies ω (eV); errors compared to full
CCSD calculation (eV); number of MOs in LoFEx XOS(n− ) and full
calculations, and estimated speed-ups of themost expensiveOV

scaling step of the CCSD part of the calculation.

System ω δω #MOs (LoFEx) #MOs (full) Speed-up

Caprylic acid . .   
Lauric acid . .   
Palmitic acid . .   
-OPDA . .   
Prostacyclin . .   
α-Gly . –   
Leupeptin . –   
Latanoprost . –   
Met-enkephalin . –   

CCSD calculation. For the largest molecules, the steep
scaling of the standard CCSD model prevented the cal-
culation of the reference excitation energies, and δω is
therefore not listed for these cases. In addition,we give the
number of MOs in the LoFEx (XOS(n − 1)) and full calcu-
lations. Since our LoFEx-CCSD scheme is a pilot imple-
mentation, we do not report explicit timings. However, in
order to get an idea of the potential computational savings
that can be obtained using LoFEx, we report estimated
speed-ups for the CCSD calculations in XOS(n − 1) com-
pared to the full CCSD calculations. The most expensive
step of the CCSD algorithm scales as O2V4 for both the
ground state [4,61] and excitation energy [12,62] calcu-
lations, where O and V denote the number of occupied
and virtual orbitals, respectively. The estimated speed-up
in the last column of Tables 1 and 2 is thus calculated
as the ratio between O2V4 for the full system and O2V4

for XOS(n − 1). We note that such speed-ups can only be
taken as a rough estimate for the computational savings
since the accumulated time spent in the CC2 calculations
during the XOS optimisation has been omitted. However,
due to the difference between the CCSD and CC2 com-
putational requirements, the CCSD step in XOS(n − 1) is

Figure . Occupied (a) and virtual (b) TDHF natural transition
orbitals (NTOs) for the lowest transition of prostacyclin using the
aug-cc-pVDZ’basis set. The contour plot value was set to . a.u.
[]. (a) Occupied NTO. (b) Virtual NTO.

expected to require more computational efforts than the
CC2 calculations in the XOS optimisation.

It is evident from Tables 1 and 2 that the errors of the
LoFEx-CCSD scheme compared to a full CCSD calcula-
tion are of the order of the LoFEx threshold τXOS = 0.02
eV or below. This demonstrates that, at least for the sys-
tems and transitions considered here, it is sufficient to
carry out the black-boxXOSoptimisation at theCC2 level
of theory and calculate the CCSD excitation energy only
in the penultimate XOS.

Due to the sixth-order scaling of CCSD calculations,
large estimated speed-ups are obtained when the XOS
is reduced significantly compared to the full calculation.
The most extreme case is for leupeptin in a cc-pVDZ
basis where the number of MOs is reduced by a factor
6, resulting in an estimated speed-up of around 50,000. It
is also clear that the speed-up depends very much on the
locality of the transition. For example, prostacyclin and
met-enkephalin in the aug-cc-pVDZ’ basis are associ-
ated with speed-ups of 6 and 2021, respectively, indicat-
ing that the considered transition for met-enkephalin is
much more local than the one for prostacyclin. This dif-
ference may be rationalised from the NTOs for the lowest
transitions of prostacyclin andmet-enkephalin, which are
plotted in Figures 3 and 4, respectively. It is seen that the
NTOs for met-enkephalin are very local compared to the
size of the molecule, while the NTOs for prostacyclin are
significantlymore diffuse (in particular the virtual NTO).
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Figure . Occupied (a) and virtual (b) TDHF natural transition
orbitals (NTOs) for the lowest transition of met-enkephalin using
the aug-cc-pVDZ’basis set. The contour plot value was set to .
a.u. []. (a) Occupied NTO. (b) Virtual NTO.

The more diffuse character of the prostacyclin transition
thus requires more important coupling effects from the
LMOs in the vicinity of the NTOs. These coupling effects
are included dynamically by the LoFEx optimisation pro-
cedure and lead to a significantly largerXOS (298MOs for
met-enkephalin compared to 525 MOs for prostacyclin).
The differences in the total size of the molecules and in
the locality of the transitions thus explain the large vari-
ation in the estimated speed-ups for met-enkephalin and
prostacyclin.

Regarding the effect of the basis set on the transitions,
as expected, the diffuse functions in the aug-cc-pVDZ’
basis bring the excitation energies downby roughly 0.1 eV
(see Tables 1 and 2). For prostacyclin, however, the lowest
excitation energy goes down by 0.6 eV (from 5.99 to 5.39
eV). This change in the energy is due to a reordering of
the spectrum in which the diffuse state corresponding to
the NTOs in Figure 3 is stabilised by the aug-cc-pVDZ’
basis and become the lowest excited state. This effect is
also reflected in the XOS optimisation procedure where
two additional steps are required for the lowest transition
of prostacyclin in the aug-cc-pVDZ’ basis compared to
the cc-pVDZ basis.

Finally, let us comment on the strengths and weak-
nesses of the LoFEx scheme. The quality of the results
obtained from a LoFEx-CCSD calculation of excitation
energies relies on the assumption that the XOS deter-
mined at the CC2 level is well adapted to describe the
electronic transition at the CCSD level. In other words,
it is assumed that the CC2 model describes properly all
the important effects of the targeted CCSD transitions. In
addition, if the transition is nonlocal—i.e. it involves sig-
nificant changes in the electron density in all regions of

a large molecule—then the XOS of a LoFEx-CCSD cal-
culation will include the full MO space and thus be as
expensive as a standard CCSD calculation plus the small
overhead due to the TDHF and CC2 parts of the LoFEx
scheme. However, significant computational savings can
be obtained if the excitation is local compared to the size
of the total molecular system. This is illustrated by the
estimated speed-ups in Tables 1 and 2, but also by the
fact that some of the calculations could not be carried out
using a conventional CCSD implementation (e.g. met-
enkephalin), while the LoFEx scheme allows us to deter-
mine excitation energies of CCSD quality for all of the
consideredmolecules. Furthermore, we note that the esti-
mated speed-ups are in agreement with the actual speed-
ups presented in Ref. [41] for the CC2 model (i.e. larger
speed-ups are obtained) since we are now considering a
higher scaling model and since the time-dominating step
is now performed in an even smaller XOS.

4. Conclusion and perspectives

We have generalised our recently developed LoFEx
approach to enable the determination of CCSD excita-
tion energies for large molecular systems at a low compu-
tational cost, provided that the transitions of interest are
local in space. In LoFEx, the CC amplitude and Jacobian
eigenvalue equations are solved in a transition-specific
excitation orbital space (the XOS) composed of the dom-
inant pair of NTOs and a reduced set of LMOs. The XOS
is optimised in a black-box manner to ensure that the
requested excitation energies are determined to a prede-
fined accuracy compared to a full CC calculation.

Our new LoFEx-CCSD algorithm is a hybrid scheme
where theXOS is determined dynamically by carrying out
a sequence of CC2 calculations of increasing size, while
only one CCSD calculation is carried out in the optimised
XOS. TheXOSused for theCCSD calculation is chosen to
be as small as possible to reduce the computational effort,
while still ensuring that the CCSD excitation energy is
determined to the predefined precision (0.02 eV in the
presentwork, but it is a tunable parameter set by the user).

If the transition is nonlocal, the LoFEx-CCSD scheme
reproduces the standard CCSD calculation and thus do
not lead to computational savings. However, large com-
putational savings can be obtained if the excitation is local
compared to the size of the total molecular system, and,
for these cases, CCSD excitation energies that are out of
reach using a conventional implementation can be deter-
mined using the LoFEx-CCSD scheme. In fact, if the tran-
sition of interest is sufficiently local, the calculations of
LoFEx-CCSD excitation energies is only limited by the
prerequisite TDHF calculation. Thus, for such local tran-
sitions, the presented scheme yields excitation energies of
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CCSD quality with a computational cost comparable to
TDDFT.

One significant advantage of the LoFEx strategy is
that once the mixed orbital space has been defined, any
CC implementation can be used to optimise the XOS
and calculate the final excitation energies. Indeed, the
XOS, defines a subset of orthogonal occupied and virtual
orbitals to which is associated a set of atomic functions.
If the Fock matrix in the XOS is diagonalised, pseudo-
canonical orbitals are obtained and a standard canoni-
cal implementation of CC can be used in that space. As
a consequence, LoFEx could also be straightforwardly
combined with other local approaches relying on, e.g.
PNOs or PAOs, to further reduce the computational cost
of LoFEx. As mentioned previously, we will also consider
extending the LoFEx procedure to the CC3 model and to
the calculation of transition strengths.
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In a recent work [Baudin and Kristensen, J. Chem. Phys. 144, 224106 (2016)], we introduced a local
framework for calculating excitation energies (LoFEx), based on second-order approximated coupled cluster
(CC2) linear-response theory. LoFEx is a black-box method in which a reduced excitation orbital space (XOS)
is optimized to provide coupled cluster (CC) excitation energies at a reduced computational cost. In this
article, we present an extension of the LoFEx algorithm to the calculation of CC2 oscillator strengths. Two
different strategies are suggested, in which the size of the XOS is determined based on the excitation energy
or the oscillator strength of the targeted transitions. The two strategies are applied to a set of medium-sized
organic molecules in order to assess both the accuracy and the computational cost of the methods. The results
show that CC2 excitation energies and oscillator strengths can be calculated at a reduced computational cost,
provided that the targeted transitions are local compared to the size of the molecule. To illustrate the potential
of LoFEx for large molecules, both strategies have been successfully applied to the lowest transition of the
bivalirudin molecule (4255 basis functions) and compared with time-dependent density functional theory.

I. INTRODUCTION

High-accuracy calculations of electronic absorption
spectra can be performed using coupled cluster (CC) re-
sponse theory1–3 via the computation of excitation en-
ergies and oscillator strengths. CC theory is well estab-
lished as the method of choice for describing the elec-
tronic structure of molecules with a ground-state domi-
nated by a single electronic configuration. However, the
high-accuracy of CC models comes with a high computa-
tional cost and for that reason standard CC calculations
of excitation energies and oscillator strengths have been
limited to rather small molecules. Less reliable compu-
tational models like time-dependent density functional
theory (TDDFT) are thus extensively used for the sim-
ulation of electronic spectra of medium-sized and large
molecules.4 We note that the equation-of-motion (EOM)
CC formalism is closely related to CC response theory
and is often used in the same context.5–7 While EOM
and response techniques are identical for the calculation
of CC excitation energies, we have chosen to consider
CC response theory in this work since it results in size-
intensive transition moments, in contrast to EOM-CC
theory.8

The computational scaling of CC methods with the
system size is associated with the usage of canonical
Hartree-Fock (HF) orbitals which are generally delocal-
ized in space, while CC theory describes local phenom-
ena (electron correlation effects).9 In the last decades,
a lot of efforts have been dedicated to the design of
low-scaling CC models, primarily for the computation of
ground-state energies.9–18 More recently, several groups
turned their attention to the calculation of excitation en-

a)pablo.baudin@chem.au.dk

ergies and molecular properties using local approxima-
tions. The combination of local occupied orbitals with
non-orthogonal virtual orbitals (e.g. projected atomic or-
bitals (PAOs) or pair natural orbitals (PNOs)) is widely
used to reduce the total number of wave function param-
eters and it has been applied to the calculation of exci-
tation energies,19–26 transition strengths,23,27 and other
molecular properties.23,27–30 The incremental scheme in
which the quantities of interest are expanded in a many-
body series has also been applied to the calculation of
CC excitation energies31 and dipole polarizabilities.32

Another recent development is the multilevel CC the-
ory in which different CC models are used to treat dif-
ferent parts of the system.33–35 In this context, we can
also mention the reduced virtual space36 and ONIOM
strategies.37,38

In a recent publication,39 we have introduced a new
strategy for the calculation of CC excitation energies at
a reduced computational cost, in which we focused on
the second-order approximated CC singles and doubles
(CC2) model. In our local framework for calculating
excitation energies (LoFEx), the locality of correlation
effects is used to generate a state-specific mixed orbital
space composed of the dominant pair of natural tran-
sition orbitals (NTOs), obtained from time-dependent
Hartree-Fock (TDHF) theory, and localized molecular or-
bitals (LMOs). This mixed orbital space is well adapted
to describe the targeted electronic transition and can be
significantly reduced (by discarding a subset of least rele-
vant LMOs in a black-box manner) without affecting the
accuracy of the calculated excitation energy. In this way,
important computational savings are possible for local
transitions in large molecular systems.

In Section II, we briefly summarize how excitation en-
ergies and oscillator strengths can be computed at the
CC2 level of theory. The LoFEx algorithm for excitation
energies is then summarized in Section III, in which we
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also suggest two different strategies for computing oscilla-
tor strengths within LoFEx. In Section IV, these strate-
gies are compared when applied to the lowest electronic
transitions of a set of medium-sized organic molecules.
We also present results for a large molecule (bivalirudin)
and compare the accuracy and computational efforts of
LoFEx with TDDFT/CAM-B3LYP calculations.

II. THE RI-CC2 MODEL FOR OSCILLATOR
STRENGTHS

The CC2 model was introduced by Christiansen et
al.40 as an intermediate model between the CCS and
CCSD models in the CC hierarchy for the calculation
of frequency-dependent properties. CC2 is therefore the
first model of the CC hierarchy to include correlation ef-
fects and thus constitutes an appropriate starting point
for LoFEx. In this section, we summarize how CC2 exci-
tation energies and oscillator strengths can be obtained
from response theory.

The CC2 ground-state amplitudes are obtained as so-
lution of the following non-linear equations,40

Ωµ1 = 〈µ1| Ĥ + [Ĥ, T2] |HF〉 = 0, (1)

Ωµ2
= 〈µ2| Ĥ + [F, T2] |HF〉 = 0, (2)

where {|HF〉 , |µ1〉 , |µ2〉} denote the Hartree-Fock (HF)
ground-state and the set of singles and doubles excitation
manifolds. F is the Fock operator and Ĥ is a similarity
(T1)-transformed Hamiltonian,

Ĥ = exp(−T1)H exp(T1), (3)

where Ti =
∑
µi
tµiτµi is a cluster operator, tµi is a

cluster amplitude, τµi is an excitation operator, and i
denotes the excitation level. The T1-transformation of
the Hamiltonian in Eq. (3) can be transferred to the
second-quantization elementary operators, which effec-
tively corresponds to a modification of the molecular or-
bital (MO) transformation matrices C with the singles
amplitudes,41,42

Xαi = Cαi
Yαi = Cαi +

∑
a Cαat

a
i

Xαa = Cαa −
∑
i Cαit

a
i

Yαa = Cαa
(4)

A two-electron T1-transformed integral in the Mulliken
notation can now be expressed as,

(pq̂|rs) =
∑

αβγδ

XαpYβqXγrYδs(αβ|γδ), (5)

where we have used the following convention to denote
orbitals:

• Atomic orbitals (AOs): α, β, γ . . .

• MOs of unspecified occupancy: p, q, r . . .

• Occupied MOs: i, j, k . . .

• Virtual MOs: a, b, c . . .

Since only closed-shell molecules are targeted in this
work, all MOs are considered spin-free.

In the CC2 model, the doubles amplitudes are only
correct through first-order in the fluctuation potential
(Φ = H−F ). This approximation leads to a closed-form
of the doubles amplitudes,

tabij =
(aî|bj)

εi − εa + εj − εb
, (6)

where εp denotes the orbital energy associated with or-
bital p. The CC2 equations can then be formulated
in a CCS-like manner in which the doubles amplitudes
are calculated on-the-fly. In order to take full advan-
tage of this formulation and avoid the storage of any
four-index quantity (amplitudes or integrals), Hättig and
Weigend used the resolution-of-the-identity (RI) approx-
imation for the two-electron integrals43,44 both in the
optimization of the CC2 ground-state and excitation
amplitudes.45 This strategy was later generalized to the
calculation of transition strengths and excited-state first-
order properties.46

In CC response theory, excitation energies and transi-
tion strengths from the ground-state (0) to an excited-
state (m) are obtained from the poles and residues of the
linear-response function, respectively.47 The poles of the
CC linear-response function correspond to the eigenval-
ues of the non-symmetric Jacobian matrix,

Aµiνj = ∂Ωµi/∂tνj , (7)

while electric dipole transition strengths are given by,

SV
jV j

0m = TV
j

0mT
V j

m0, (8)

TV
j

0m =
∑

pq

[Dη
pq(R) +Dξ

pq(M̄)]V̂ j
pq, (9)

TV
j

m0 =
∑

pq

Dξ
pq(L)V̂ j

pq, (10)

where V̂ j
pq is a Cartesian component (j = x, y, z) of

the T1-transformed electric dipole integrals in the length
gauge and Dη

pq and Dξ
pq are one-electron density matrices

(see Appendix A). R and L are the right and left Jaco-
bian eigenvectors following the normalization condition
LR = 1 and M̄ are the transition moment Lagrangian
multipliers. In addition, the ground-state Lagrangian
multipliers t̄ are required for the calculation of the one-
electron density matrices. As for the CC2 ground-state
amplitudes, the CC2 excitation amplitudes and the La-
grange multipliers can be obtained without storing any
four-index quantity by considering an effective Jacobian
matrix,45,46

Aeff
µ1ν1(ω) = Aµ1ν1 −

∑

γ2

Aµ1γ2Aγ2ν1
εγ2 − ω

, (11)
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where ω is an excitation energy and εaibj = εa−εi+εb−εj .
Using the effective Jacobian, the response equations to be
solved become,

Aeff(ω)R1 = ωR1, (12)

L1A
eff(ω) = L1ω, (13)

t̄1A
eff(0) = −ηeff

1 , (14)

M̄1(Aeff(−ω) + ω1) = −m̄eff
1 , (15)

where the subscript 1 denotes the singles part of a vector,
and ηeff

1 and m̄eff
1 are the effective right-hand-sides of the

linear equations for the ground-state and transition mo-
ments Lagrange multipliers, respectively. Once Eqs. (12)
to (15) have been solved, the one-electron density matri-
ces Dη

pq and Dξ
pq can be calculated and contracted with

V̂ j
pq to get the right and left transition dipole moments

as well as transition strengths. All doubles quantities
can be constructed on-the-fly whenever needed using the
RI approximation for the two-electron integrals. In Ap-
pendix A we collect all the working equations required
to calculate CC2 transition moments in a canonical MO
basis. The equations are given here for completeness but
should be equivalent to the ones in Ref. 46. (A few typos
were present in the original paper and are corrected in
Appendix A).

When studying electronic transitions, one often con-
sider oscillator strengths instead of the transition
strengths given by Eq. (8). Oscillator strengths in the
length gauge are straightforwardly obtained as,

f0m =
2

3
ωm

∑

j=x,y,z

SV
jV j

0m , (16)

where ωm is the excitation energy for a transition from
the ground-state to the m-th excited-state. The calcu-
lation of excitation energies and oscillator strengths at
the CC2 level has been implemented in a local version of
the LSDalton program48,49 following the strategy pre-
sented in Refs. 45 and 46.

III. EXCITATION ENERGIES AND OSCILLATOR
STRENGTHS WITHIN LOFEX

In a previous publication39 we have introduced the
LoFEx algorithm as a framework to calculate CC2 ex-
citation energies of large molecules. In this section, we
summarize the LoFEx procedure and extend it to the
computation of CC2 oscillator strengths.

A. Excitation energies

In LoFEx a transition-specific orbital space is con-
structed based on the solutions of the TDHF problem
for the whole molecule and starting from HF canonical
molecular orbitals (CMOs). First, NTOs are obtained by

performing a singular-value-decomposition (SVD) of the

TDHF transition density matrix, b̃, for each transition
of interest,39,50,51

b̃†b̃uk = λkuk, k = 1, 2, · · · , No, (17)

b̃b̃†vk = λ′kvk, k = 1, 2, · · · , Nv, (18)

which leads to the transformation matrices from CMOs
to NTOs for the occupied and virtual spaces, respectively,

U = (u1,u2, · · · ,uNo
), (19)

V = (v1,v2, · · · ,vNv
), (20)

Where No (Nv) is the number of occupied valence (vir-
tual) orbitals. Assuming No ≤ Nv, it follows that
λk ≡ λ′k for k = 1, 2, · · · , No, while λ′k = 0 for k =
No + 1, · · · , Nv. The relevance of a given pair of NTOs
(k) in the electronic transition associated with the den-

sity matrix b̃ can be evaluated through its singular value√
λk.50,52 For singles-dominated transitions, one pair of

NTOs (with singular value close to one) dominates the
transition, while the other NTOs are far less important
to describe the process and thus have much smaller sin-
gular values. In LoFEx we therefore keep the dominant
pair of NTOs intact, while the remaining orbitals are lo-
calized using the square of the second central moment
of the orbitals as a localization function.53,54 This proce-
dure (summarized in the upper part of Fig. 1) results in
a mixed orbital space composed of orthogonal NTOs and
localized molecular orbitals (LMOs) that is adapted to
the description of a specific electronic transition. Core
orbitals are not considered in the generation of NTOs
and are localized independently to avoid mixing between
core and valence spaces.

In this mixed orbital space, the dominant pair of NTOs
is expected to describe the main character of the targeted
electronic transition, while the LMOs enable an efficient
description of correlation effects. In order to reduce the
computational cost of the CC calculation, a subspace of
the mixed NTO/LMO space is then constructed by con-
sidering the most relevant orbitals based on an effective
distance r̃p given by,

r̃p = min
A

(
rAp

QNTO,o
A

,
rAp

QNTO,v
A

)
, (21)

where index A denotes atomic centers, rAp corresponds to
the distance between the center of charge of a local orbital

p and atomic center A, and QNTO,o
A and QNTO,v

A are the
Löwdin atomic charges of the occupied and virtual NTOs
on center A, respectively. The resulting reduced space is
denoted the excitation orbital space (XOS). The inactive
Fock matrix can then be diagonalized in the XOS to ob-
tain a set of pseudo-canonical orbitals. CC excitation en-
ergies (and eventually oscillator strengths) can then be
calculated in the XOS using standard canonical imple-
mentations, as described in Section II and Appendix A
for the CC2 model.
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FIG. 1. Schematic representation of the original LoFEx pro-
cedure. U and V represent the transformation matrices from
canonical molecular orbitals (CMOs in white) to natural tran-
sition orbitals (NTOs in grey) for the valence and virtual

spaces, respectively. C̃, Ũ, and Ṽ represent the transforma-
tion matrices to local molecular orbitals (LMOs in stripes) for
core, valence, and virtual orbitals, respectively, excluding the
dominant pair of NTOs. r̃p is the effective distance measure
given by Eq. (21), ω(i) is the excitation energy correspond-

ing to the i-th excitation orbital space (XOS(i)) and τω is the
LoFEx excitation energy threshold.

In order to preserve the black-box feature of CC theory,
the XOS is optimized as depicted in the lower part of
Fig. 1, i.e., a first guess for the XOS (XOS(1)) is built and
the CC problems are solved in that space to provide the
excitation energy ω(1), the XOS is then extended based
on the list defined by Eq. (21) until the difference between
the last two excitation energies is smaller than the LoFEx
excitation energy threshold τω, (|ω(n−1) − ω(n)| < τω).
We have shown in Ref. 39 (where τω was denoted τXOS),
that this procedure can result in significant speed-ups
compared to standard CC2 implementations without loss
of accuracy.

B. Oscillator strengths

For the calculation of oscillator strengths with LoFEx,
we consider the following strategies:

1. The XOS is optimized solely based on the excita-
tion energy (as described in Fig. 1 and Ref. 39)
and the oscillator strength is only calculated once
in the optimized XOS (XOS(n−1)).

2. Both excitation energies and oscillator strengths
are calculated in each LoFEx iteration and only
the oscillator strength is checked for convergence.
In other words, the XOS is considered converged
when, |f (n) − f (n−1)| < τf , where τf is the LoFEx
oscillator strength threshold.

Note that in the XOS optimization, the last step (step
n) is necessary to check that step n− 1 was already con-
verged. The calculation of oscillator strengths in point 1
is therefore done in the penultimate XOS to ensure min-
imal computational efforts.

In the following section, we will refer to point 1 as
the standard-LoFEx strategy, while point 2 is denoted
the spectrum strategy. Indeed, in point 2 the oscillator
strength threshold τf has a different purpose than the
excitation energy threshold τω. Checking only the oscil-
lator strength for convergence is expected to provide a
balanced description of the transitions in the sense that
transitions with large oscillator strengths should be well
described, while weak transitions (with f ' 0) are ex-
pected to converge in minimal XOSs and lead to less
accurate excitation energies, while using less computa-
tional resources. The standard-LoFEx strategy is thus
preferred if accurate excitation energies are requested for
all transitions, while the spectrum strategy is more ap-
propriate if one is only interested in transitions with a
significant oscillator strengths.

IV. RESULTS

In this section we present numerical results for excita-
tion energies and oscillator strengths using the standard-
and spectrum-LoFEx strategies introduced in Section III.
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For that purpose, we consider the following set of
medium-sized organic molecules,

• caprylic acid,

• lauric acid,

• palmitic acid,

• 15-oxopentadecanoic acid (15-OPDA),

• prostacyclin,

• an α-helix composed of 8 glycine residues (α-Gly8),

• leupeptin,

• latanoprost,

• met-enkephalin, and

• 11-cis-retinal.

The molecular geometry for 11-cis-retinal was obtained
from Ref. 26, while for the other systems, the Cartesian
coordinates as well as details regarding the optimization
of the structures are available in Ref. 39 and its support-
ing information. All the calculations presented in this
section have been performed with a local version of the
LSDalton program,48,49 using the correlation consistent
aug-cc-pVDZ’ basis set55,56 with the corresponding auxil-
iary basis, aug-cc-pVDZ-RI’ for the RI approximation.57

The prime in the basis set notation indicates that diffuse
functions have been removed on the hydrogen atoms.

The parameters used in the following investigation
have been set to the same default values as in Ref. 39,
i.e., the LoFEx excitation energy threshold was set to
τω = 0.02 eV and the number of orbitals added to
the XOS in each LoFEx iteration corresponds to ten
times the average number of orbitals per atom. For the
spectrum-LoFEx strategy we have chosen τf = 0.001.

A. Calculation of oscillator strengths within LoFEx

In Table I we report the LoFEx excitation energies
and oscillator strengths for the lowest electronic transi-
tions of the molecules presented above when using the
standard-LoFEx strategy. Absolute errors in the excita-
tion energies and the oscillator strengths as well as speed-
ups compared to conventional CC2 implementations are
also reported. Since in the standard-LoFEx strategy, the
oscillator strength is only calculated in the converged
(penultimate) XOS, we report excitation energies corre-
sponding to both the expanded (step n) and converged
(step n − 1) XOSs. We note that, as demonstrated in
Ref. 39, the excitation energies in the expanded steps
are “overconverged” (all errors are well below 0.02 eV),
while in the penultimate steps the errors in the excitation
energies are of the order of the LoFEx excitation energy
threshold (0.02 eV). For the oscillator strengths, the ab-
solute errors are equal or below 0.005 and are strongly

correlated with the intensity of the transitions (larger os-
cillator strengths correspond to larger errors), except for
11-cis-retinal which include the complete orbital space.

Regarding the speed-ups of the standard-LoFEx al-
gorithm compared to a conventional (multi-state) CC2
implementation, it is found that the state-specific ap-
proach of LoFEx remains advantageous in most cases,
even for the computation of several transitions. This is
of course strongly dependent on the character of the tran-
sitions and on the size of the molecule, e.g. in the case
of 15-OPDA, the two lowest transitions are rather lo-
cal and converge in only two LoFEx iterations but the
third transition has a more delocalized character39 and
requires almost the complete orbital space to be included
in the XOS which limits significantly the obtained speed-
up (1.52). Another less favorable case for LoFEx is the
lowest transition of 11-cis-retinal. Both the excitation
energy and the oscillator strength are perfectly recov-
ered by LoFEx. However, the complete orbital space
is required in order to determine the excitation energy
to the desired precision, and the oscillator strength thus
also has to be calculated in the complete orbital space,
which results in a “speed-up” of 0.61. This behaviour
can be understood by looking at the dominant pair of
NTOs in Fig. 2, which shows that the transition is basi-
cally affecting the whole molecule, preventing any com-
putational savings using LoFEx. This should be put in
contrast with the performance of LoFEx for the met-
enkephalin molecule, where both the excitation energy
and the oscillator strength are well described with only 3
LoFEx iterations, resulting in a significant speed-up (34).
It should be emphasized that the gain in terms of compu-
tational efforts for met-enkephalin is much greater than
the computational overhead observed for 11-cis-retinal.
These two examples demonstrate that LoFEx is designed
to ensure error control and accuracy of the results, while
computational savings are transition and system depen-
dent.

With the idea of producing electronic spectra of CC2
quality at a reduced computational cost, we now turn
our attention to the spectrum-LoFEx strategy. In elec-
tronic spectra, it is important to provide a good descrip-
tion of the transitions with large oscillator strengths and,
for that purpose, the standard-LoFEx strategy might be
inappropriate since it converges the XOS based on the
excitation energies and not on the oscillator strengths.
In Table II we report the LoFEx excitation energies and
oscillator strengths for the lowest electronic transitions of
the molecules presented above when the spectrum-LoFEx
strategy is used with τf = 0.001. Absolute errors in the
excitation energies and the oscillator strengths as well
as speed-ups compared to conventional CC2 implemen-
tations are also reported. Since in the spectrum-LoFEx
strategy, the oscillator strengths and excitation energies
are calculated in each LoFEx iteration, we only report
the values corresponding to the most accurate results,
i.e., the ones from the expanded XOS (step n). Note also
that, while in the standard-LoFEx procedure at least two
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TABLE I. Comparison of standard-LoFEx (τω = 0.02 eV) and conventional CC2 excitation energies and oscillator strengths.
The LoFEx excitation energies are given in eV for the largest XOS (step n) and for the converged XOS (step n − 1), while
oscillator strengths are only reported for the converged XOS. Absolute errors are given for both excitation energies and oscillator
strengths. Finally, the number of iterations in the XOS optimization (n) as well as speed-ups of LoFEx compared to conventional
CC2 algorithms are also reported.

System State No. iter. (n) ω(n) δω(n) ω(n−1) δω(n−1) f (n−1) δf (n−1) Speed-up

Caprylic acid S1 2 6.06 0.00 6.07 0.01 0.000 0.000
0.72

S2 3 6.83 0.00 6.83 0.00 0.066 0.003
Lauric acid S1 3 6.05 0.00 6.06 0.00 0.000 0.000

1.29
S2 3 6.81 0.00 6.82 0.01 0.065 0.005

Palmitic acid S1 3 6.06 0.00 6.06 0.00 0.000 0.000
4.07

S2 3 6.81 0.01 6.83 0.03 0.065 0.005
15-OPDA S1 2 4.44 0.00 4.45 0.01 0.000 0.000

1.52S2 2 6.06 0.00 6.08 0.02 0.000 0.000
S3 5 6.19 0.00 6.19 0.00 0.040 0.001

Prostacyclin S1 5 4.98 0.00 4.99 0.01 0.005 0.000 1.16
α-gly8 S1 4 5.43 0.00 5.43 0.00 0.001 0.000

2.46
S2 4 5.73 0.00 5.73 0.01 0.003 0.001

Leupeptin S1 3 4.27 0.01 4.28 0.01 0.001 0.000 3.37
Latanoprost S1 3 5.08 0.00 5.08 0.01 0.001 0.000 16.8
Met-enkephalin S1 3 4.78 0.00 4.79 0.01 0.024 0.002 34.0
11-cis-retinal S1 5 2.14 0.00 2.14a 0.00a 1.384a 0.000a 0.61

a The full molecule was included in step n which was not yet converged, so in this case, ω(n−1) and f (n−1) are effectively calculated in
XOS(n).

TABLE II. Comparison of spectrum-LoFEx (τf = 0.001) and conventional CC2 excitation energies and oscillator strengths.
The LoFEx excitation energies and the corresponding absolute errors are given in eV. We also report the oscillator strengths
and corresponding absolute errors as well as the number of iterations used in the XOS optimization (n) and the speed-ups of
LoFEx compared to conventional CC2 algorithms.

System State No. iter. (n) ω(n) δω(n) f (n) δf (n) Speed-up

Caprylic acid S1 1 6.07 0.01 0.000 0.000
0.65

S2 3 6.82 0.00 0.069 0.000
Lauric acid S1 1 6.08 0.02 0.000 0.000

0.79
S2 4 6.81 0.00 0.070 0.000

Palmitic acid S1 1 6.09 0.04 0.000 0.000
0.88

S2 5 6.80 0.00 0.070 0.000
15-OPDA S1 1 4.45 0.01 0.000 0.000

0.97S2 1 6.08 0.02 0.000 0.000
S3 5 6.19 0.00 0.040 0.001

Prostacyclin S1 5 4.98 0.00 0.005 0.000 0.71
α-gly8 S1 2 5.46 0.03 0.001 0.000

11.1
S2 2 5.76 0.04 0.004 0.002

Leupeptin S1 1 4.30 0.04 0.000 0.001 69.0
Latanoprost S1 3 5.07 0.00 0.001 0.000 9.31
Met-enkephalin S1 4 4.78 0.00 0.022 0.000 5.01
11-cis-retinal S1 5 2.14 0.00 1.384 0.000 0.42

steps are necessary to check the convergence of excitation
energies (n ≥ 2), in the spectrum strategy we consider
that the first step can be directly converged if f (1) < τf .

From Table II, we see that for the strongest transitions
(with f > 0.01) the errors in both the excitation ener-
gies and the oscillator strengths are very satisfactory. As
expected, for weaker transitions, larger errors occur in
the excitation energies (up to 0.04 eV) which is related
to the fact that only the oscillator strengths are used to

converge the XOS. For example, for the lowest transition
of leupeptin (f = 0.001 and δω = 0.04), the weak charac-
ter of the transition leads to a converged XOS in the first
iteration and a significant speed-up (69.0) is observed.
However, the results in Table II also show that, even if
some computational time is saved on the weakest transi-
tions, more time has to be dedicated to the stronger ones
since larger XOSs are required to achieved the desired ac-
curacy and since the oscillator strengths have to be calcu-
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FIG. 2. Stick representation of the 11-cis-retinal molecule.
Natural transition orbitals for the lowest transition are rep-
resented with a contour value of 0.02 a.u. (bottom: occupied
NTO, top: virtual NTO).58

lated in each LoFEx iteration. As a consequence, less im-
pressive speed-ups are observed for the spectrum-LoFEx
strategy (except for α-gly8 and leupeptin). However, as
for the standard-LoFEx strategy in Table I we note that
the potential speed-ups are much larger than the addi-
tional overhead present in the less favorable cases.

Comparing Tables I and II we note that for all the
transitions with f > 0.01, the number of required it-
erations with the spectrum strategy is always larger or
equal to the number of iterations used in the standard-
LoFEx strategy. In accordance with Ref. 27, this sug-
gests that a fine-tuned description of (strong) oscillator
strengths requires larger orbital spaces than the excita-
tion energy alone. Finally, we note that both the ac-
curacy and the computational savings are driven by the
main LoFEx threshold (τf for the spectrum strategy)
and that in practical applications of LoFEx, τf could of
course be increased to reduce the computational efforts at
the expense of obtaining slightly less accurate oscillator
strengths.

B. Large-scale application: the bivalirudin molecule

In order to demonstrate the potential of LoFEx for
large molecules, we apply both the standard and spec-
trum strategies for the calculation of the lowest excita-
tion energy and the corresponding oscillator strength of
the bivalirudin molecule (see Fig. 3). Bivalirudin is a
synthetic polypeptide containing 20 residues. The struc-
ture used in this paper was obtained from the Chem-
Spider database,59 hydrogen atoms were added and the
geometry was relaxed at the molecular mechanics level
(MMFF9460 force field) using Avogadro.61,62 The Carte-
sian coordinates of the optimized structure are available
as supplementary material. The calculations have been

FIG. 3. Stick representation of the bivalirudin molecule. Nat-
ural transition orbitals for the lowest transition are repre-
sented with a contour value of 0.02 a.u. (bottom: occupied
NTO, top: virtual NTO).58

performed using the cc-pVDZ and aug-cc-pVDZ’ basis
sets which (for the whole molecule) contain 2860 and 4255
basis functions, respectively.

One of the goals of LoFEx is to provide CC results with
a computational cost that can compete with TDDFT. In
order to evaluate this feature for the bivalirudin calcu-
lations, we have performed TDDFT/CAM-B3LYP63–65

calculations using the same basis sets and targeting the
same transition as for the LoFEx calculations. We
note that for a fair comparison, the density-fitting43,66,67

approximation for the Coulomb integrals was used in
both the TDDFT calculations and in the TDHF part of
LoFEx. We have also performed the LoFEx calculations
without density-fitting in the TDHF part and verified
that the final LoFEx-CC2 results were not affected by
this approximation (to the desired precision). Note, that
the calculations in Section IV A were performed with-
out using density-fitting in the TDHF part of LoFEx.
In Table III, we report timings for LoFEx as well as for
the TDDFT calculations. For LoFEx, we also report the
fraction of the time (in %) spent in the CC part of the cal-
culations denoted TCC/tot. All the calculations reported
in Table III were performed on Dell C6220 II compute-
nodes, with 2 ten-core Intel E5-2680 v2 CPUs @ 2.8 GHz
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TABLE III. LoFEx CC2 calculations of excitation energies and oscillator strengths for the lowest transition of the bivalirudin
molecule. For standard-LoFEx, τω = 0.02 eV and we report values for ω(n) and f (n−1), while for spectrum-LoFEx, τf = 0.001

and we report values for ω(n) and f (n). For comparison TDDFT/CAM-B3LYP results are also reported. Timings are given in
hours for all calculations and the fraction of time spent in the CC part of the LoFEx calculations is given in % as TCC/tot.

Basis set method No. iter. (n) ω f Time (hours) TCC/tot

cc-pVDZ
standard-LoFEx 3 4.98 0.030 7 3.2
spectrum-LoFEx 4 4.98 0.029 8 15
CAM-B3LYP — 5.14 0.034 13 —

aug-cc-pVDZ’
standard-LoFEx 3 4.82 0.028 157a 1.4
spectrum-LoFEx 4 4.82 0.026 164a 5.5
CAM-B3LYP — 5.01 0.029 205a —

a For the aug-cc-pVDZ’ results, the TDDFT calculation and the TDHF parts of the LoFEx calculations were performed in parallel
using 6 compute-nodes. Timings for those parts was therefore scaled by the number of nodes.

and 128 GB of memory.

Regarding the computational efforts in LoFEx, the val-
ues for TCC/tot in Table III indicates that only a few per-
cents of the time is spent in the CC2 part of the calcula-
tions. In the best case, for the standard-LoFEx/aug-cc-
pVDZ’ result only 1.4 % is spent in the CC2 algorithm,
while 15 % are used in the spectrum-LoFEx/cc-pVDZ
calculation. Of course, for a given type of transition, the
larger the molecule, the smaller TCC/tot would be. This
indicates that, as expected, LoFEx effectively enables CC
calculations of excitation energies and oscillator strengths
at roughly the cost of a TDHF calculation, provided that
the transition of interest is local compared to the size of
the molecule. In fact, the LoFEx calculations are be-
tween 1.2 and 1.9 times faster than the corresponding
TDDFT/CAM-B3LYP calculations.

In Table III, we also report the excitation energies and
oscillator strengths obtained with the different methods
(TDDFT and LoFEx). Both LoFEx strategies give the
same excitation energies for which a red-shift of 0.16 eV
is observed when adding diffuse functions in the basis set.
The TDDFT numbers lie 0.16 and 0.19 eV higher than
the CC2 excitation energies for the cc-pVDZ and aug-cc-
pVDZ’ basis sets, respectively, which shows reasonably
good agreement between the two methods. As expected,
the values for the oscillator strengths are slightly more
dependent on the choice of the LoFEx strategy. Since
CC2 reference numbers are out of reach, one should con-
sider the results of the spectrum-LoFEx strategy to be
superior (it takes one more iteration to converge). The
TDDFT oscillator strengths are slightly higher for both
basis sets but still very close to the CC2 results.

V. CONCLUSION

In this paper we have presented an extension of
the LoFEx algorithm to the computation of oscillator
strengths using CC2 linear-response theory. In LoFEx,
a state-specific mixed orbital space is generated from a
TDHF calculation on the whole molecule by considering

the dominant pair of NTOs, while the remaining orbitals
are localized. A reduced excitation orbital space (XOS),
is then determined in a black-box manner for each elec-
tronic transition. Two different strategies have been sug-
gested for the computation of oscillator strengths within
LoFEx: a standard strategy in which the XOS is opti-
mized solely based on the CC2 excitation energy, while
the oscillator strength is only calculated in the converged
(penultimate) XOS, and a spectrum strategy which per-
forms the XOS optimization directly based on the oscil-
lator strength. The first approach is designed to provide
accurate excitation energies for all targeted transitions,
while the second strategy is dedicated to the calculation
of electronic spectra, such that strong transitions are de-
scribed accurately, while less computational efforts are
spent on weak and forbidden transitions.

Both strategies have shown promising results in terms
of accuracy when applied to a set of medium-sized or-
ganic molecules. Significant computational savings with
respect to conventional CC2 implementations are ob-
tained whenever the considered transitions are local com-
pared to the size of the molecule. However, we note
that for the strongest transition investigated in this work
(S1 of 11-cis-retinal), no computational savings could be
obtained due to the delocalized electronic structure of
the molecule. Many spectroscopically interesting chro-
mophores have a delocalized electronic structure,68 and
for such species, little or no computational savings would
be obtained using LoFEx. In order to extend the applica-
bility of LoFEx, it might therefore be necessary to further
reduce the size of the XOS by considering, e.g., pair nat-
ural orbitals (PNOs),24,26 or improved NTOs. This issue
will be addressed in future publications. Nonetheless,
the current LoFEx algorithm could be applied success-
fully to the bivalirudin molecule with 4255 basis func-
tions, demonstrating that for transitions that are local
compared to the size of the molecule, LoFEx can pro-
vide CC2 excitation energies and oscillator strengths at
a computational cost competing with that of TDDFT.
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SUPPLEMENTARY MATERIAL

See supplementary material for the Cartesian coordi-
nates of the molecular geometry of bivalirudin.
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Appendix A: Working equations for CC2 transition
moments

In this appendix we summarize the working equations
of the CC2 model for the calculation of excitation en-
ergies and (ground-state to excited-state) transition mo-
ments for closed-shell molecules. For the derivation of
those equations we have considered spin-free canonical
orbitals and the following biorthonormal basis,42

〈
ab
ij

∣∣ = 〈HF|EjbEia, (A1a)
∣∣ab
ij

〉
= EaiEbj |HF〉 , (A1b)

〈
ãb
ij

∣∣∣ =
1

1 + δai,bj

(
1

3

〈
ab
ij

∣∣+
1

6

〈
ab
ji

∣∣
)
, (A1c)

〈
ãb
ij

∣∣∣ cdkl
〉

= δaibj,ckdl, (A1d)

where Eai is a singlet excitation operator in second-
quantization. The singles and doubles cluster operators
are then defined as follows,

T1 =
∑

ai

taiEai, (A2)

T2 =
1

2

∑

aibj

tabij EaiEbj . (A3)

In the following section we only provide the CC2 work-
ing equations, for the details regarding the algorithm and
the use of the RI approximation for the two-electron re-
pulsion integrals, we refer to Refs. 45 and 46.

1. Overview

The computation of transition moments from CC2
linear-response theory can be performed as follows (all
the intermediate quantities are given in the following sec-
tions),

1. Determine the ground-state singles amplitudes tai
from Eq. (1) and using Table V (left).

2. Determine the ground-state singles Lagrangian
multipliers t̄ai from Eq. (14) and using Table VI
(left) with ω = 0 and with the right-hand-side from
Eq. (A22).

3. Determine the “right” singles excitation amplitudes
Rai from Eq. (12) and using Table V (right).

4. Determine the “left” singles excitation amplitudes
Lai from Eq. (13) and using Table VI (left).

5. Check that right and left excitation energies agree
to the desired precision and normalize the excita-
tion vectors using Eqs. (A25) and (A26),

∑

ai

LaiR
a
i +

1

2

∑

aibj

LabijR
ab
ij = 1 (A4)

6. Determine the transition moment Lagrangian mul-
tipliers M̄a

i from Eq. (15) and using Table VI (left).
The right-hand-side has to be computed before-
hand from Table VI (right) which requires the opti-
mized right excitation amplitudes and the ground-
state Lagrangian multipliers. The corresponding
doubles quantities are computed on-the-fly from
Eqs. (A25), (A27) and (A30).

7. Compute the one-particle density matrices given in
Appendix A 5 using the doubles quantities in Ap-
pendix A 4.

8. The density matrices can then be contracted with
electric dipole moment T1-transformed integrals to
get the transition strengths as in Eqs. (8) to (10).

2. Integrals and Fock matrices

We write two-electron repulsion integrals in the Mul-
liken notation as,

(pq|rs) =
∑

αβγδ

CαpCβqCγrCδs(αβ|γδ) (A5)

where the Cαp are Hartree-Fock canonical MO coeffi-
cients.

A general inactive Fock matrix is given by

Fpq =hpq +
∑

i

[2(pq|ii)− (pi|iq)] = δpqεp (A6)

hpq =
∑

αβ

CαpCβqhαβ (A7)



10

where we have introduced the one-electron integrals hpq
and Hartree-Fock orbital energies εp, εq . . .

We consider integrals transformed with the singles
ground-state amplitudes,

(pq̂|rs) =
∑

αβγδ

XαpYβqXγrYδs(αβ|γδ) (A8)

ĥpq =
∑

αβ

XαpYβqhαβ (A9)

Xαi = Cαi
Yαi = Cαi +

∑
a Cαat

a
i

Xαa = Cαa −
∑
i Cαit

a
i

Yαa = Cαa
(A10)

We also have integrals transformed with a general
“right” singles vector, bai ,

(pq̄|rs) =P prqs
∑

αβγδ

(X̄αpYβq +XαpȲβq)XγrYδs(αβ|γδ)

(A11)

P prqs f
pr
qs =fprqs + frpsq (A12)

h̄pq =
∑

αβ

(X̄αpYβq +XαpȲβq)hαβ (A13)

X̄αi = 0
Ȳαi =

∑
a Cαab

a
i

X̄αa = −∑i Cαib
a
i

Ȳαa = 0
(A14)

where, depending on the context, bai may correspond to
the trial right excitation amplitudes or the optimized
right excitation amplitudes Rai .

Similarly, we consider integrals transformed with a
general “left” singles vector, b̄ai ,

(pq̆|rs) =P prqs
∑

αβγδ

(X̆αpYβq +XαpY̆βq)XγrYδs(αβ|γδ)

(A15)

X̆αi =
∑
aXαab̄

a
i

Y̆αi = 0

X̆αa = 0

Y̆αa = −∑i Yαib̄
a
i

(A16)

where, depending on the context, b̄ai may correspond to
the trial left excitation amplitudes, the optimized left
excitation amplitudes Lai , the ground-state Lagrangian
multipliers t̄ai , or the transition moment Lagrangian mul-
tipliers M̄a

i .
Finally, we also introduce the following one-index

transformed integrals,

(̃ia|jb) = −Pabij

(∑

ck

t̄ciR
c
k(ka|jb) +

∑

ck

t̄akR
c
k(ic|jb)

)
. (A17)

Expressions for the different blocks of the T1-
transformed and “right”-transformed Fock matrices are
given in Table IV.

3. Linear-transformed vectors and right-hand-sides

In Table V we gather the working equations for the
ground-state singles residual,

Ωai = Ω0
ai + ΩGai + ΩHai + ΩIai + ΩJai = 0, (A18)

and for a “right” linear-transformed vector,

σai =
∑

bj

Aeff
ai,bj(ω)bbj = σ0

ai+σ
G
ai+σ

H
ai+σ

I
ai+σ

J
ai, (A19)

while Table VI contains the working equations for a “left”
linear-transformed vector,

σ̄ai =
∑

bj

b̄bjA
eff
bj,ai(ω) = σ̄0

ai+σ̄
G
ai+σ̄

H
ai+σ̄

I
ai+σ̄

J
ai, (A20)

and for the effective right-hand-side of the transition mo-
ment Lagrangian multipliers,

m̄eff
ai = m̄eff,0

ai + m̄eff,G
ai + m̄eff,H

ai + m̄eff,I
ai + m̄eff,J

ai . (A21)

The effective right-hand-side for the ground-state La-
grangian multipliers is given by,

ηeff
ai =2F̂ia +

∑

ckd

η̃cdki (ck̂|da)−
∑

ckl

η̃cakl (ck̂|il), (A22)

η̃abij = 2
2(ia|jb)− (ib|ja)

εi − εa + εj − εb
. (A23)

4. Doubles quantities

All doubles quantities can be calculated on-the-fly from
the corresponding singles which are kept in memory. We
consider the ground-state doubles amplitudes,

tabij =
(aî|bj)

εi − εa + εj − εb
, (A24)

the right doubles excitation amplitudes,

Rabij =
(aī|bj)

εi − εa + εj − εb + ω
, (A25)

the left doubles excitation amplitudes,

Labij =
2(iă|jb)− (ib̆|ja) + P abij [2Lai F̂jb − Laj F̂ib]

εi − εa + εj − εb + ω
, (A26)

the ground-state doubles Lagrangian multipliers,

t̄abij = η̃abij +
2(iă|jb)− (ib̆|ja) + P abij [2t̄ai F̂jb − t̄aj F̂ib]

εi − εa + εj − εb
, (A27)

and the transition moment doubles Lagrangian multipli-
ers,

M̄ab
ij = Fabij +

2(iă|jb)− (ib̆|ja) + Pabij [2M̄a
i F̂jb − M̄a

j F̂ib]

εi − εa + εj − εb − ω
. (A28)
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TABLE IV. Inactive transformed Fock matrices.

F̂pq = ĥpq +
∑
i[2(pq̂|ii)− (pî|iq)] F̄pq = h̄pq +

∑
i[2(pq̄|ii)− (pī|iq)]

F̂ij =
∑
ck[2(ij |̂kc)− (iĉ|kj)]tck + εiδij F̄ij =

∑
kc[2(ij |̂kc)− (iĉ|kj)]Rck +

∑
bR

b
jF̂ib

F̂ia =
∑
ck[2(ia|kc)− (ic|ka)]tck F̄ia =

∑
kc[2(ia|kc)− (ic|ka)]Rck

F̂ai =
∑
ck[2(aî|kc)− (aĉ|ki)]tck + (εa − εi)tai F̄ai =

∑
kc[2(aî|kc)− (aĉ|ki)]Rck +

∑
bR

b
jF̂ab −

∑
j R

a
j F̂ji

F̂ab =
∑
ck[2(ab̂|kc)− (aĉ|kb)]tck + εaδab F̄ab =

∑
kc[2(ab̂|kc)− (aĉ|kb)]Rck −

∑
j R

a
j F̂jb

TABLE V. CC2 working equations for the ground-state residual Ωai and a “right” linear-transformed vector σai.

Terms Ωai σai = Aeff
ai,bj(ω)bbj

0 (εa − εi)tai
∑
bEabb

b
i −

∑
j Ejib

a
j

G +
∑
cdk t̃

dc
ik(kĉ|ad) +

∑
cdk b̃

dc
ik(kĉ|ad)

H −∑ckl t̃
ac
lk (kĉ|li) −∑ckl b̃

ac
lk (kĉ|li)

I +
∑
ck t̃

ac
ik F̂kc +

∑
ck

[
b̃acik F̂kc + t̃acik F̄kc

]

J +
∑
ck[2(kĉ|ai)− (kî|ac)]tck +

∑
ck[2(kĉ|ai)− (kî|ac)]bck

t̃abij = 2(aî|bj)−(bî|aj)
εi−εa+εj−εb b̃abij = 2(aī|bj)−(bī|aj)

εi−εa+εj−εb+ω

Eji = F̂ji +
∑
cdk t̃

dc
ik(kc|jd)

Eab = F̂ab −
∑
ckl t̃

ac
lk (kc|lb)

Where η̃abij and F abij have been defined in Eq. (A23) and
Table VI (right), respectively. The ground-states doubles
amplitudes and the doubles excitation amplitudes are of-
ten used in the form,

t̃abij =2tabij − tbaij , (A29)

R̃abij =2Rabij −Rbaij . (A30)

5. One-particle density matrices

The CC2 transition moments are calculated from the following one-particle density matrices,

Dξ
ij(X) = −

∑

abk

Xab
jk t

ab
ik (A31)

Dξ
ia(X) =

∑

ck

Xc
k t̃
ac
ik (A32)

Dξ
ai(X) = Xa

i (A33)

Dξ
ab(X) =

∑

ijc

Xac
ij t

bc
ij (A34)

where X denotes either the “left” excitation amplitudes L or the transition moment Lagrangian multipliers M̄.
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TABLE VI. CC2 working equations for a “left” linear-transformed vector σ̄ai and the right-hand-side of the transition moment
Lagrangian multipliers equation m̄eff

ai .

Terms σ̄ai = b̄bjA
eff
bj,ai(ω) m̄eff

ai

0
∑
bEbab̄

b
i −

∑
j Eij b̄

a
j

∑
b Ēbat̄

b
i −

∑
j Ēij t̄

a
j

G +
∑
cdk b̄

dc
ik(ck̂|da) +

∑
cdk[F dcik (ck̂|da) + t̄dcik(ck̄|da)]

H −∑ckl b̄
ac
lk (ck̂|il) −∑ckl[F

ac
lk (ck̂|il) + t̄aclk (ck̄|il)]

I +
∑
ck[2(kc|ia)− (ka|ic)]Cck +

∑
ck[2(kc|ia)− (ka|ic)]C̄ck

+2
∑
ck[2(kc|ia)− (ka|ic)]Rck

J +
∑
ck[2(ck̂|ia)− (câ|ik)]b̄ck +

∑
ck[2(ck̄|ia)− (cā|ik)]t̄ck

b̄abij =
2(iă|jb)−(ib̆|ja)+Pab

ij [2b̄ai F̂jb−b̄aj F̂ib]

εi−εa+εj−εb+ω
F abij =

2 ˜(ia|jb)− ˜(ib|ja)+Pab
ij [2t̄ai F̄jb−t̄aj F̄ib]

εi−εa+εj−εb−ω
Cai =

∑
bj t̃

ab
ij b̄

b
j C̄ai =

∑
bj R̃

ab
ij t̄

b
j

Eij = F̂ij +
∑
cdk t̃

dc
jk(kc|id) Ēij = F̄ij +

∑
cdk R̃

dc
jk(kc|id)

Eba = F̂ba −
∑
ckl t̃

bc
lk(kc|la) Ēba = F̄ba −

∑
ckl R̃

bc
lk(kc|la)

Finally, we have,

Dη
ij(R) =−

∑

a

t̄ajR
a
i −

∑

abk

t̄abjkR
ab
ik (A35)

Dη
ia(R) =2Rai +

∑

ck

t̄ckR̃
ac
ik −

∑

b

(∑

kjc

t̄bckjt
ac
kj

)
Rbi −

∑

j

(∑

cbk

t̄cbjkt
cb
ik

)
Raj (A36)

Dη
ai(R) =0 (A37)

Dη
ab(R) =

∑

i

t̄aiR
b
i +

∑

ijc

t̄acijR
bc
ij . (A38)
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Werner, J. Chem. Phys. 136, 144105 (2012).
12C. Riplinger, B. Sandhoefer, A. Hansen, and F. Neese, J. Chem.

Phys. 139, 134101 (2013).
13J. J. Eriksen, P. Baudin, P. Ettenhuber, K. Kristensen, T. Kjær-

gaard, and P. Jørgensen, J. Chem. Theory Comput. 11, 2984
(2015).

14H.-J. Werner, G. Knizia, C. Krause, M. Schwilk, and M. Dorn-
bach, J. Chem. Theory Comput. 11, 484 (2015).

15C. Riplinger, P. Pinski, U. Becker, E. F. Valeev, and F. Neese,
J. Chem. Phys. 144, 024109 (2016).

16W. Li, Z. Ni, and S. Li, Mol. Phys. 114, 1447 (2016).
17P. R. Nagy, G. Samu, and M. Kállay, J. Chem. Theory Comput.
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23D. Kats and M. Schütz, Zeitschrift für Phys. Chemie 224, 601

(2010).
24B. Helmich and C. Hättig, J. Chem. Phys. 139, 084114 (2013).
25B. Helmich and C. Hättig, Comput. Theor. Chem. 1040-1041,

35 (2014).
26A. K. Dutta, F. Neese, and R. Izsák, J. Chem. Phys. 145, 034102

(2016).
27D. Kats, T. Korona, and M. Schutz, J. Chem. Phys. 127, 064107

(2007).
28T. D. Crawford, in Recent Progress in Coupled Cluster Methods:
Theory and Applications, Vol. 53, edited by P. Cársky, J. Paldus,
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We present a new method for calculating coupled cluster (CC) excitation energies at a reduced computational
cost. It relies on correlated natural transition orbitals (NTOs), denoted CIS(D’)-NTOs, which are obtained
by diagonalizing generalized hole and particle density matrices obtained from configuration interaction singles
(CIS) information and additional terms that represent correlation effects. The determination of the CIS(D’)-
NTOs formally scales cubically with the size of the system. A transition-specific reduced orbital space is
determined based on the eigenvalues of the CIS(D’)-NTOs, and a standard CC calculation of excitation
energies is then performed in that reduced orbital space. The new method denoted SNOFLEx (Simplified
Natural transition Orbital Framework for Large-scale coupled-cluster Excitation energy calculations) is tested
by calculating second-order approximate CC singles and doubles (CC2) excitation energies for a set of organic
molecules. It is shown that SNOFLEx generally yields excitation energies of CC2 quality at a significantly
reduced computational cost, even for relatively small systems and delocalized electronic transitions. SNOFLEx
is also applied to solvated formamide containing an increasing number of water molecules to illustrate that
the method can be applied to large molecular systems (up to 4836 basis functions).

I. INTRODUCTION

Nowadays, coupled cluster (CC) theory,1,2 together
with the response function3–7 or the equation-of-
motion8–11 formalisms, is well established as the method
of choice for the calculation of electronic transition prop-
erties of molecules dominated by a single electronic
configuration. However, the steep computational scal-
ing with system size of CC theory limits its applica-
tion to molecules with a few tens of atoms. For the
calculation of transition properties of large molecules,
more affordable but less reliable methods, such as time-
dependent density-functional-theory (TDDFT), are gen-
erally preferred.12 The limitations of DFT methods are
well known,13,14 and it is therefore very important to pro-
vide more robust alternatives for large scale calculations
of transition properties.

The steep computational scaling of CC theory can
be attributed to the use of highly delocalized canonical
Hartree-Fock (HF) orbitals, while the correlation effects
described at the CC level are of local nature.15,16 For
the calculation of CC ground state energies, many meth-
ods have been developed to take advantage of the local-
ity of correlation effects to reduce the cost of CC calcu-
lations, and some efficient linear-scaling algorithms are
now available.17–21 We note that the ground state corre-
lation energy is a size-extensive quantity, and by defini-
tion, CC algorithms that target size-extensive properties
have to scale at least linearly with the system size. The
key to achieving a reduction in computational cost with-
out affecting significantly the accuracy of the calculated
quantities is to formulate the CC equations in a basis

a)kasperk@chem.au.dk

where the inherent locality of electron correlation can be
efficiently exploited. While local and orthogonal occu-
pied orbitals are universally used,22–25 the virtual space
can be described by local orthogonal virtual orbitals,25–27

or non-orthogonal alternatives such as projected atomic
orbitals (PAOs),28 orbital-specific virtuals (OSVs),29 or
pair-natural orbitals (PNOs).30–32

More recently, some attention has also been given
to the calculation of excitation energies and other
frequency-dependent properties. In this context it is im-
portant to realize that electronic transition properties are
size-intensive. For local electronic transitions, it should
therefore be possible to devise a procedure where the
computational cost depends only on the character of the
electronic transition but not on the system size. How-
ever, electronic transitions may involve changes in the
electronic density of the entire molecule, and it is there-
fore not straightforward to use the same locality approxi-
mations in calculations of transition properties as for the
ground state energy.

In the design of approximated CC methods for exci-
tation energy calculations, the size-intensivity of elec-
tronic transitions has often been ignored. Instead, the
local approximations for ground state calculations have
been extended to take into account the potential delo-
calized character of electronic transitions by relying on
information from low level calculations (typically from
the configuration interaction singles (CIS) model).33–41

Such strategies allow for a more uniform description of
size-intensive and size-extensive properties but it limits
significantly the potential computational savings. On the
other hand, some approaches have been designed specif-
ically for the calculation of size-intensive properties and
cannot be used to obtain, e.g. correlation energies.42–47

Finally, computational savings can be obtained by sim-
ply truncating the virtual orbital space in the canonical
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orbital basis.48,49

In a previous publication, we have introduced a lo-
cal framework for calculating CC excitation energies
(LoFEx),47 which provides a general approach to calcu-
late excitation energies at a reduced computational cost.
The orbital space in the LoFEx approach is a mixed space
containing natural transition orbitals (NTOs) and local-
ized molecular orbitals (LMOs). A subset of this mixed
orbital space is then optimized in a black-box manner
to ensure error control on the calculated quantities. In
Ref. 47, it was shown that a very compact description
of electronic transitions could be obtained for transitions
that are localized to a small part of the molecular sys-
tem considered. However, as mentioned above, electronic
transition are not necessarily local, and for transitions
that are delocalized over a large part of the molecule, no
computational savings can be obtained with LoFEx.

In this paper we investigate alternative orbital spaces
that are not relying on LMOs and can be used to effi-
ciently describe all types of transitions (including delocal-
ized transitions) and avoid the need for an optimization
of the reduced orbital space. The new orbital spaces are
made of generalized NTOs that include correlation effects
and an optimal reduced orbital space can be obtained
based solely on the NTO eigenvalues as described in
Section II. The new method entitled SNOFLEx (Simpli-
fied Natural transition Orbital Framework for Large-scale
coupled-cluster Excitation energy calculations) is tested
on a set of 22 spectroscopically interesting medium-sized
molecules to calculate excitation energies at the second-
order approximated CC singles and doubles (CC2) level
(Section III). Significant speed-ups can be achieved even
for the smallest systems and the most delocalized tran-
sitions. We also calculate excitation energies of solvated
formamide clusters of increasing size to illustrate the ca-
pabilities of the new method.

II. THEORY

Our overall goal is to reduce the computational cost
of CC response calculations by employing a reduced set
of orthogonal molecular orbitals (MOs). In this work
we consider excitation energies calculated using the CC2
model introduced by Christiansen et al.,50 where the
resolution-of-the-identity (RI) approximation is used for
the two-electron repulsion integrals, as introduced by
Hättig and Weigend.51 We refer to Refs. 50,51 for a de-
tailed description of the CC2 model and focus here on the
generation of orthogonal MO spaces adapted to describe
electronic transitions.

Throughout the paper we consider closed-shell
molecules and spin-free orbitals using the following in-
dex convention:

• i, j, k, l: Occupied canonical MOs

• a, b, c, d: Virtual canonical MOs

• I, J,K,L: Occupied MOs in the CIS-NTO basis

• A,B,C,D: Virtual MOs in the CIS-NTO basis

• p: MOs of unspecified nature and occupation

• α, β, γ, δ: Atomic orbitals

In Section II A, we introduce the concept of NTOs at
the CIS level and summarize the generation of a CIS-
NTO/LMO mixed orbital space similar to the one intro-
duced in Ref. 47. In Sections II B and II C we generalized
the concept of NTOs to include correlation effects at the
CC2, and CIS(D)52 levels of theory, while an approxima-
tion to CIS(D)-NTOs is introduced in Section II D.

A. CIS-NTOs and mixed orbital space

NTOs are usually obtained from a singular-value-
decomposition (SVD) of one-particle transition density
matrices (TDM).53,54 At the CIS level, the TDM associ-
ated to a given electronic transition is obtained from the
following eigenvalue problem,55

(HCIS − EHF1)RCIS = ωCISRCIS. (1)

where HCIS is the CIS Hamiltonian, EHF is the HF
ground-state energy, and the eigenvalue ωCIS is the exci-
tation energy associated to the TDM or excitation vector
RCIS. An SVD of RCIS is equivalent to the diagonaliza-
tion of the following hole and particle density matrices,

XCIS
ij =

∑

a

RCIS
ai R

CIS
aj (2a)

Y CIS
ab =

∑

i

RCIS
ai R

CIS
bi . (2b)

CIS-NTOs are thus obtained from,

XCISUCIS = λCISUCIS (3a)

YCISVCIS = λ̃CISVCIS (3b)

where λCIS and λ̃CIS are diagonal matrices with eigen-
values λCIS

p and λ̃CIS
p on the diagonal. The UCIS/VCIS

matrices represent the transformation from the occu-
pied/virtual canonical MO basis to the occupied/virtual
CIS-NTO basis. In the following discussion it is assumed
that the eigenvalues in Eqs. (3) are numbered in order
of decreasing magnitude and that the number of virtual
orbitals is larger than the number of occupied orbitals,
(V > O), which is the case in all practical applications.
In order to simplify the following discussion we note that
for a real matrix B of dimension (m,n), the number of a
priori non-zero singular values of B is given by its rank,
such that we have,

rank(BTB) = rank(BBT ) = rank(B) ≤ min(m,n) (4)
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Thus, from Eqs. (2) it follows that

rank(XCIS) = rank(RCIS) ≤ O (5a)

rank(YCIS) = rank(RCIS) ≤ O (5b)

which implies that the last (V −O) eigenvalues of YCIS

are zero. Furthermore, the first O virtual eigenvalues
λ̃CIS
p equals the occupied eigenvalues λCIS

p , i.e.,54

λ̃CIS
p = λCIS

p (1 ≤ p ≤ O) (6a)

λ̃CIS
p = 0 (O < p ≤ V ) (6b)

We also note that normalization of the CIS excitation
vector is equivalent to requiring the sum of the eigenval-
ues to equal one,

∑

p

λCIS
p = 1 (7)

The magnitude of the eigenvalues λCIS
p can be related

to the importance of a given pair of CIS-NTOs to de-
scribe the transition of interest at the CIS level of the-
ory. It would thus be convenient to choose a subset of
CIS-NTOs based on their eigenvalues and then carry out
a correlated CC calculation within this reduced orbital
space in order to decrease the computational effort of the
CC calculation. However, such a strategy is not useful
in practice since it discards at least all the virtual CIS-
NTOs with zero eigenvalue which ultimately results in
too large errors in the subsequent CC calculation. In
Ref. 47, this issue was alleviated by generating a mixed
orbital space in which the dominant pair of NTOs was
kept unaltered since they represent the main character-
istic of the transition (for single-replacement dominated
transitions), while the remaining orbitals were localized
to enable an efficient description of correlation effects.
The importance of a given LMO p to describe the con-
sidered transition was then evaluated through an effective
distance measure, r̃p,

r̃p = min
A

(
rAp

QCIS-NTO,o
A

,
rAp

QCIS-NTO,v
A

)
(8)

where index A denotes atomic centers, rAp corresponds
to the distance between the center of charge of a lo-

cal orbital p and atomic center A, and QCIS-NTO,o
A and

QCIS-NTO,v
A are the Löwdin atomic charges (with values

between 0 and 1) of the dominating occupied and virtual
NTOs on center A, respectively. The r̃p distance mea-
sure is thus small if the center of orbital p is close to an
atom where one (or both) of the CIS-NTOs have a large
Löwdin charge. Using this measure, the LMOs are listed
according to their r̃p values, and the LMOs with small r̃p
values are assumed to be most important for describing
the electronic transition of interest. The mixed orbital
space was then used in LoFEx to reduce the computa-
tional cost of the CC2 model for excitation energies. This
strategy is successful when applied to transitions that are

local compared to the size of the considered molecule.
However, for molecules with a more delocalized electronic
structure, no computational savings could be achieved.47

We note that in Ref. 47, time-dependent HF (TDHF)-
NTOs were used instead of CIS-NTOs but this difference
has very minor effects on the final orbital space since the
TDHF and CIS methods are closely related.56

In the following sections we generalized the concept
of NTOs to include correlation effects with the objective
of calculating accurate CC excitation energies within a
reduced orbital space of correlated NTOs.

B. CC2-NTOs

In order to add the effects of CC2 doubles excitations
in the NTOs, we consider the following generalized hole
and particle density matrices at the CC2 level of theory,

XCC2
ij =

∑

a

RCC2
ai RCC2

aj +
1

2

∑

abk

RCC2
aibkR

CC2
ajbk (9a)

Y CC2
ab =

∑

i

RCC2
ai RCC2

bi +
1

2

∑

ijc

RCC2
aicjR

CC2
bicj (9b)

where RCC2
ai and RCC2

aibj are the singles and doubles com-
ponents of the solution vector of the right CC2 eigenvalue
problem,50

ARCC2 = ωCC2RCC2, (10)

and A and ωCC2 are the CC2 Jacobian and CC2 exci-
tation energy, respectively. In analogy with Eqs. (3) for
the CIS density matrices, the CC2-NTOs are obtained
by diagonalizing XCC2 and YCC2,

XCC2UCC2 = λCC2UCC2 (11a)

YCC2VCC2 = λ̃CC2VCC2 (11b)

For the following analysis, it is convenient to interpret
the total RCC2 eigenvector entering Eq. (9a) as a matrix
RX with a singles block of dimension (V ,O) and elements
RCC2
a,i and a doubles block of dimension (V 2O, O) and

elements 1√
2
RCC2
bja,i (see Fig. 1, left). This enables us to

write the XCC2 matrix in Eq. (9a) as,

XCC2 = (RX)TRX (12)

Similarly, we consider a matrix RY with a singles block
of dimension (V ,O) and elements RCC2

a,i and a doubles

block of dimension (V ,O2V ) and elements 1√
2
RCC2
a,ibj (see

Fig. 1, right) and write the YCC2 matrix in Eq. (9b) as,

YCC2 = RY (RY )T (13)

Using the general identity in Eq. (4) and the dimen-
sions of the RX and RY matrices it then follows that

rank(XCC2) ≤ min(V + V 2O,O) = O (14a)

rank(YCC2) ≤ min(V,O +O2V ) = V (14b)
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FIG. 1: Representation of the RX (left) and RY (right) matrices
used to calculate generalized transition density matrices.

1√
2
Rbja,i

Ra,i

V 2O

V

O

Ra,i
1√
2
Ra,ibjV

O O2V

This should be put in contrast with the ranks of the CIS
density matrices in Eqs. (5). Comparing Eqs. (2) and
(9) we thus see that the inclusion of the doubles excita-
tion vector component enables the existence of nonzero
eigenvalues for all of the CC2-NTOs generated by di-

agonalization of XCC2 and YCC2. We also note that,
in contrast with the CIS case in Eq. (6), the occupied
and virtual CC2-NTO eigenvalues are generally different,
λCC2
p 6= λ̃CC2

p .

The generation of the CC2-NTOs requires the deter-
mination of the CC2 excitation vector for the full molec-
ular system, and the CC2-NTOs are therefore primarily
of analytical interest whenever CC2 excitation energies
are targeted. It is thus intructive to look at the explicit
expression for the CC2 doubles excitation vector in order
to consider approximations in Sections II C and II D that
could be invoked in practical calculations of CC2 excita-
tion energies. From Ref. 51, the CC2 doubles excitation
vector is given by,

RCC2
aibj =

(aī|bj)CC2

εi − εa + εj − εb + ωCC2
(15)

where the transformed integrals are written as,

(aī|bj)CC2 = P abij
∑

αβγδ

(
Λ̄CC2
αa ΛCC2

βi + ΛCC2
αa Λ̄CC2

βi

)
ΛCC2
γb ΛCC2

δj (αβ|γδ) (16)

with

P abij faibj = faibj + fbjai (17)

and

Λ̄CC2
αa = −

∑

i

CαiR
CC2
ai (18a)

Λ̄CC2
αi =

∑

a

CαaR
CC2
ai (18b)

ΛCC2
αa = Cαa −

∑

i

Cαitai (18c)

ΛCC2
αi = Cαi +

∑

a

Cαatai (18d)

where C is the standard (canonical) MO coefficient ma-
trix and tai are the ground state CC2 singles amplitudes,
while εi and εa represent occupied and virtual orbital en-
ergies, respectively. The expensive part of the CC2-NTO
procedure is the calculation of the doubles excitation vec-
tor components RCC2

aibj in Eqs. (15) and their contraction

in Eqs. (9), both of which scale as O(N5) where N is
a measure of the size of the molecular system. In par-
ticular, the determination of RCC2

aibj requires the iterative

solution of both the ground state CC2 equations (to de-
termine tai) and the subsequent iterative solution of the
CC2 eigenvalue problem in Eq. (10).

C. CIS(D)-NTOs

As a first approximation to the CC2-NTOs, we con-
sider NTOs generated from the simpler CIS(D) model.52

In Eq. (15), this effectively corresponds to setting the
ground state singles amplitudes to zero (tai = 0) and us-
ing the CIS excitation energy and excitation vector in-
stead of the corresponding CC2 quantities. Thus, within

the CIS(D) model, the R
CIS(D)
aibj amplitudes may be de-

termined in a non-iterative O(N5) process according to

R
CIS(D)
aibj =

(aī|bj)CIS

εi − εa + εj − εb + ωCIS
(19)

where the transformed integrals are given by,

(aī|bj)CIS = P abij
∑

αβγδ

(
Λ̄CIS
αa Cβi+CαaΛ̄CIS

βi

)
CγbCδj(αβ|γδ)

(20)

Λ̄CIS
αa = −

∑

i

CαiR
CIS
ai (21a)

Λ̄CIS
αi =

∑

a

CαaR
CIS
ai (21b)

The CIS(D)-NTOs are then obtained by diagonalizing
the CIS(D) hole and particle density matrices, which are
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constructed analogously to Eqs. (9),

X
CIS(D)
ij =

∑

a

RCIS
ai RCIS

aj +
1

2

∑

abk

R
CIS(D)
aibk R

CIS(D)
ajbk (22a)

Y
CIS(D)
ab =

∑

i

RCIS
ai RCIS

bi +
1

2

∑

ijc

R
CIS(D)
aicj R

CIS(D)
bicj (22b)

D. CIS(D’)-NTOs

While the generation of X and Y according to
Eqs. (22) rather than Eqs. (9) represents a significant
reduction in terms of computational effort, it is still an
O(N5) process. We now propose that the generation
of correlated NTOs can be simplified even further to re-
duce the computational scaling by using CIS information
to approximate the doubles terms in Eqs. (22). The re-
sulting orbitals are denoted CIS(D’)-NTOs, since they
represent an approximation to the CIS(D)-NTOs.

The occupied and virtual CIS-NTO bases are defined
by the UCIS and VCIS transformation matrices, respec-
tively, [see Eq. (3)]. We consider two mixed bases—one
where the occupied orbitals are canonical and the vir-
tual orbitals are expressed in the CIS-NTO basis, and
vice versa— leading to the following approximate dou-
bles vectors

R
CIS(D’)
AiBj =

(Aī|Bj)CIS

εi − FAA + εj − FBB + ωCIS
(23a)

R
CIS(D’)
aIbJ =

(aI |̄bJ)CIS

FII − εa + FJJ − εb + ωCIS
(23b)

where we have used capital letters to denote the CIS-
NTO basis. We have made the approximation to use di-
agonal Fock matrix elements in the CIS-NTO basis. The
use of Eqs. (23) alone does not reduce the computational
effort compared to CIS(D). However, from Eqs. (2), (3),
and (6) we note that the CIS excitation vector in the CIS-
NTO basis is of dimension (V,O) and has the following
simple form,

RCIS =

(√
λCIS

0

)
(24)

where
√
λCIS is a diagonal square matrix of dimension

(O,O) with diagonal elements
√
λp. From Eqs. (20) and

(21) it thus follows that, in the CIS-NTO basis, only
elements of the Λ̄CIS matrix associated with sizable CIS-
NTO eigenvalues will contribute significantly to the dou-
bles vectors in Eqs. (23). Using Eq. (7) we therefore
define a subset of Z important CIS-NTOs for which the
eigenvalues add up to one minus some threshold τ ′,

min
Z

( Z∑

p=1

λCIS
p

)
> 1− τ ′ (25)

where p refers to either occupied (p = I) or virtual
(p = A) CIS-NTOs. Our basic assumption is now that

the subset of CIS-NTOs defined by Eq. (25) is sufficient
to generate a reasonable approximation to the CIS(D)
density matrices in Eq. (22). We thus use the doubles
excitation vectors in the mixed canonical/CIS-NTO ba-
sis defined by Eqs. (23) to define the following CIS(D’)
hole and particle density matrices,

X
CIS(D’)
ij =

∑

a

RCIS
ai RCIS

aj +
1

2

∑

A′B′k

R
CIS(D’)
A′iB′k R

CIS(D’)
A′jB′k (26a)

Y
CIS(D’)
ab =

∑

i

RCIS
ai RCIS

bi +
1

2

∑

I′J′c

R
CIS(D’)
aI′cJ′ R

CIS(D’)
bI′cJ′ (26b)

where the prime indicates that the summations run only
over the subset of Z CIS-NTOs defined by Eq. (25), while
the summations in the canonical basis run over the full
set of orbitals.

The generation of CC2-NTOs and CIS(D)-NTOs are
iterative and non-iterative O(N5) processes, respectively.
An algorithm for generating CIS(D’)-NTOs using the
RI approximation is given in Appendix A where it is
shown that the generation of CIS(D’)-NTOs has a for-
mal O(N3) scaling behaviour (assuming that the reduced
dimension Z is independent of system size for a given
type of electronic transition). It follows that CIS(D’)-
NTOs can be calculated for much larger molecular sys-
tems than CC2-NTOs or CIS(D)-NTOs. We thus pro-
pose to use CIS(D’)-NTOs to reduce the computational
cost and thereby extend the application range of CC ex-
citation energy calculations in terms of the following pro-
cedure:

1. Solve the CIS eigenvalue problem in Eq. (1) and
determine CIS-NTOs according to Eqs. (3).

2. Choose a τ ′ threshold to define a subset of CIS-
NTOs according to Eq. (25).

3. Construct CIS(D’)-NTOs by diagonalizing the den-
sity matrices calculated from Eqs. (26),

XCIS(D’)UCIS(D’) = λCIS(D’)UCIS(D’) (27a)

YCIS(D’)VCIS(D’) = λ̃CIS(D’)VCIS(D’) (27b)

4. Scale the CIS(D’) density matrix eigenvalues, such
that they add up to one (equivalent to normalizing
the CIS(D’) excitation vectors),

∑

p

λCIS(D’)
p =

∑

p

λ̃CIS(D’)
p = 1 (28)

5. Choose a subset of occupied and virtual CIS(D’)-
NTOs defined as in Eq. (25) but from CIS(D’)-NTO
eigenvalues,

min
Zo

( Zo∑

p=1

λCIS(D’)
p

)
> 1− τ ′ (29a)

min
Zv

( Zv∑

p=1

λ̃CIS(D’)
p

)
> 1− τ ′ (29b)
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This subset of orbitals containing Zo occupied
CIS(D’)-NTOs and Zv virtual CIS(D’)-NTOs is de-
noted the excitation orbital space (XOS).

6. For the chosen CC model (CC2 in this work), de-
termine the CC excitation energy associated to
the targeted transition by solving the CC ground
state amplitude equations and the CC eigenvalue
problem, both of which are solved using only the
CIS(D’)-NTOs within the XOS.

We denote the approach defined by these six steps as
the Simplified Natural transition Orbital Framework for
Large-scale coupled-cluster Excitation energy calcula-
tions (SNOFLEx). We emphasize that the SNOFLEx
procedure should be applied to each electronic transition
of interest.

In analogy with Eqs. (14) for CC2, the ranks of the
CIS(D’) density matrices obey the following equations,

rank(XCIS(D’)) ≤ min(O, V +OZ2) = O (30a)

rank(YCIS(D’)) ≤ min(V,O + Z2V ) = V (30b)

and, in general, the eigenvalues of all CIS(D’)-NTOs are
thus nonzero. The importance of having nonzero eigen-
values for all NTOs can now be understood from the
SNOFLEx procedure above. Indeed, the nonzero eigen-
values are required to ensure a smooth convergence to
the target CC excitation energies with decreasing values
of τ ′—i.e., the full CC calculation is reproduced in the
limit where τ ′ → 0, since Zo → O and Zv → V .

It should be noted that the use of CIS(D’)-NTOs im-
plies that only single-replacement dominated electronic
transitions that are described at the CIS level of theory
can be addressed. However, many transitions of inter-
est in typical organic and biological molecules are of this
type. Furthermore, for the CC2 model, which is the tar-
get model is the present study, single-replacement dom-
inated transitions are correct through second order in
the fluctuation potential, while double-replacement dom-
inated transitions are correct only to zeroth order.57 The
CC2 model thus provides accurate results only for tran-
sitions dominated by single-electron replacements. The
fact that our CIS(D’)-NTOs can be generated only for
such transitions is therefore not a severe limitation from
a practical point of view.

In practice we transform the CIS(D’)-NTOs within the
given XOS to a pseudo-canonical basis by diagonalizing
the occupied-occupied and virtual-virtual subblocks of
the Fock matrix. In this way, a standard CC code may
be used for the ground state and excitation energy cal-
culations in the sixth step above. We also note that the
number of atomic orbitals and auxiliary functions used
to express the MOs in the XOS can be reduced by remov-
ing orbital tails using the least squares fitting procedure,
which is detailed in Appendix B of Ref. 58.

In summary, we have described four different sets of or-
thogonal MOs that may be prioritized according to their
expected importance for describing a given electronic

excitation process: the CIS-NTO/LMO mixed orbital
space, CC2-NTOs, CIS(D)-NTOs, and CIS(D’)-NTOs.
The NTOs are defined by the unitary transformation ma-
trices that diagonalize the hole and particle density ma-
trices in Eqs. (2), (9), (22), and (26) for the CIS, CC2,
CIS(D), and CIS(D’) models, respectively. When defin-
ing a reduced orbital space (the XOS), the CC2-NTOs,
CIS(D)-NTOs, and CIS(D’)-NTOs may be prioritized ac-
cording to their eigenvalues, while the orbitals of the CIS-
NTO/LMO mixed orbital space can be prioritized using
the measure in Eq. (8).

III. RESULTS

In this section we present numerical results and investi-
gate the quality of the different orbital spaces introduced
in the previous section for the calculation of excitation
energies. We consider the lowest CC2 excitation energy
for the following molecules:

• The twenty molecules from XLI to LX in the test
set presented in Ref. 59 (depicted in Scheme 3 of
that paper).

• 11-cis-retinal using the geometry from Ref. 60.

• Met-enkephalin using the geometry from Ref. 47.

• Molecular clusters of solvated formamide contain-
ing up to 144 water molecules. The structures were
obtained by modification of a single snapshot taken
from Ref. 61 and are available in the supporting in-
formation.

All calculations have been performed with a local version
of the LSDalton program,62,63 using the frozen core ap-
proximation. The correlation consistent aug-cc-pVDZ’
and aug-cc-pVTZ’ basis sets64,65 were used with the
corresponding auxiliary basis sets aug-cc-pVDZ-RI’ and
aug-cc-pVTZ-RI’ for the RI approximation.66 The prime
in the basis set notation indicates that diffuse functions
have been removed from the hydrogen atoms.

In Section III A we perform a comparison of the four
different orbital spaces described in Section II for two se-
lected molecules that represent a local (met-enkephalin)
and a delocalized (11-cis-retinal) electronic transition. In
Section III B we apply the SNOFLEx method to a test
set composed of molecules XLI to LX, 11-cis-retinal, and
met-enkephalin. The calculated excitation energies and
computational timings are compared to full CC2 calcu-
lations. In Section III C we demonstrate the potential of
SNOFLEx by applying it to solvated formamide with an
increasing number of water molecules.

A. Comparison of NTOs

In this section, we consider the lowest electronic transi-
tions in met-enkephalin and 11-cis-retinal, which are de-
picted in Figs. 2 and 3 together with the dominant pair
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FIG. 2: Illustration of lowest electronic transition in
met-enkephalin in terms of the dominant occupied (red, bottom)

and virtual (blue, top) CIS-NTOs (aug-cc-pVDZ’ basis). The
contour plot value was set to 0.02 a.u.67,68

FIG. 3: Illustration of lowest electronic transition in 11-cis-retinal
in terms of the dominant occupied (red, bottom) and virtual

(blue, top) CIS-NTOs (aug-cc-pVDZ’ basis). The contour plot
value was set to 0.02 a.u.67,68

of CIS-NTOs corresponding to the lowest electronic tran-
sition. For met-enkephalin, it is clear that the transition
is localized in a relatively small region of the molecule,
while the transition in 11-cis-retinal involves almost the
entire molecule. The met-enkephalin and 11-cis-retinal
cases are therefore prototypes of a local and a delocal-
ized transition, respectively.

We have carried out CC2 calculations within restricted
XOSs using the four different sets of orbitals described in
Section II, i.e., the CIS-NTO/LMO, CC2-NTO, CIS(D)-
NTO, and CIS(D’)-NTO orbital spaces using τ ′ = 10−4

for the generation of CIS(D’)-NTOs. For a given XOS
we simply solve the CC2 ground state amplitude equa-
tion and CC2 eigenvalue equation using only the subset
of orbitals within the XOS. The orbitals are prioritized
as described in section II, and the dimension of the XOS
is increased until the full CC2 calculation is reproduced.
In Figs. 4 and 5 we present the lowest CC2 excitation en-
ergies and associated errors for the met-enkephalin and
11-cis-retinal molecules as a function of the number of
MOs included in the XOS. For a given XOS, errors com-
pared to full CC2 calculation arise since (i) the ground
state amplitude equations and (ii) the CC2 eigenvalue
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FIG. 4: Calculated CC2/aug-cc-pVDZ’ excitation energy (top)
and error (bottom) as a function of the size of the excitation
orbital space (XOS) for met-enkephalin (aug-cc-pVDZ’ basis)

using different choices of orbital spaces.

problem in Eq. (10) are solved in the restricted XOS. We
note that the (i)-errors affects the (ii)-errors indirectly,
since the Jacobian matrix A in Eq. (10) is determined
from ground state amplitudes.50 All in all, the complex
interplay of these two error sources ultimately leads to
the errors observed in Figs. 4 and 5.

The CIS-NTO/LMO mixed space behaves markedly
different for the two molecules. For met-enkephalin the
excitation energy error is below 0.1 eV when about 200
orbitals have been included in the XOS based on eq. (8)
[see Fig. 4 (bottom)], while almost 500 orbitals are re-
quired to achieve the same accuracy for 11-cis-retinal [see
Fig. 5 (bottom)]. This behaviour is expected based on
the localities of the two transitions. For the local transi-
tion in met-enkephalin (Fig. 2), the use of LMOs enables
a significant reduction of the XOS, since a large region
of the molecule is unaffected by the transition. On the
other hand, for the delocalized transition in 11-cis-retinal
(Fig. 3), the transition induces changes in the electronic
structure throughout the molecular system and the use of
LMOs offers very modest reductions of the XOS. These
two examples clearly show the strength and weaknesses
of the CIS-NTO/LMO approach introduced in Ref. 47,
i.e., significant computational savings are possible for lo-
cal transitions, while a delocalized transition essentially
requires the full molecular CC calculation to be carried
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FIG. 5: Calculated CC2/aug-cc-pVDZ’ excitation energy (top)
and error (bottom) as a function of the size of the excitation

orbital space (XOS) for 11-cis-retinal (aug-cc-pVDZ’ basis) using
different choices of orbital spaces.

out.

From Figs. 4 and 5 it is seen that the calculations using
CC2-, CIS(D)-, or CIS(D’)-NTOs exhibit much smaller
errors than the calculations using the CIS-NTO/LMO
mixed space. For the delocalized transition in Fig. 5,
the use of either CC2-, CIS(D)-, or CIS(D’)-NTOs allow
for errors below 0.1 eV with only around 100 orbitals
included in the XOS, and, even for the local transition in
Fig. 4, the use of either CC2-, CIS(D)-, or CIS(D’)-NTOs
leads to much smaller errors than the CIS-NTO/LMO
mixed space for a given size of the XOS.

The results in Figs. 4 and 5 obtained using the CC2-,
CIS(D)-, and CIS(D’)-NTOs are very similar, indicating
that all three sets of NTOs contain information about
the basic correlation effects. This is a very important re-
sult, since the CIS(D’)-NTOs are much cheaper to gen-
erate than the CIS(D)- and CC2-NTOs (see Section II
and appendix A). We note that both negative and pos-
itive errors occur, and it is notable that in many cases
the CIS(D’)-NTOs yield smaller absolute errors than the
CIS(D)- and CC2-NTOs. This can happen due to a can-
cellation of the error sources (i) and (ii) mentioned above.

In summary, the met-enkephalin and 11-cis-retinal re-
sults presented here indicate that the CIS(D’)-NTOs can
be used to generate a reduced orbital space that may
significantly lower the computational cost of CC2 calcu-

lations for both local and delocalized transitions.

B. Performance of SNOFLEx for test set

In this section we use the test set of 22 molecules pre-
sented at the beginning of this section to compare the
accuracy and computational cost of the SNOFLEx proce-
dure described in Section II D with conventional (canon-
ical) CC2 calculations. In Tables I and II, we report a
statistical analysis of the lowest excitation energies for
the considered test set using the aug-cc-pVDZ’ and aug-
cc-pVTZ’ basis sets. In order to evaluate the convergence
of the excitation energies with the size of the XOS, we
have performed calculations using τ ′ = 10−3, 10−4, and
10−5. For each transition, a conventional CC2 calcu-
lation (using the complete orbital space) has been per-
formed to serve as a reference in the statistical analysis.
We report the individual errors in the excitation energies,
∆i = ωSNOFLEx

i − ωref
i , along with the mean absolute er-

ror,

∆̄abs =
1

n

n∑

i=1

|∆i|, (31)

the maximum absolute error,

∆max = max
i
|∆i|, (32)

the mean error,

∆̄ =
1

n

n∑

i=1

∆i, (33)

and the standard deviation,

∆std =

√√√√ 1

n− 1

n∑

i=1

(∆i − ∆̄)2. (34)

where n = 22 is the number of molecules in the test set.
From Tables I and II, we see that the excitation ener-

gies obtained with SNOFLEx are very well behaved. For
example, using τ ′ = 10−4, accurate results are obtained
compared to a conventional CC2 calculation, with a mean
absolute error of ∆̄abs = 0.01 eV for both aug-cc-pVDZ’
and aug-cc-pVTZ’ basis sets. However, the maximum
absolute errors and the standard deviations are slightly
larger in the aug-cc-pVTZ’ basis (e.g., ∆max = 0.02 eV
and ∆max = 0.05 eV in the aug-cc-pVDZ’ and aug-cc-
pVTZ’ basis sets, respectively). Overall, these result
indicates that SNOFLEx with τ ′ = 10−4 provides ex-
citation energies of CC2 quality and it is therefore the
threshold that we recommend in practical applications.

In contrast, the results obtained with τ ′ = 10−3 are
significantly less accurate. The mean absolute errors
(∆̄abs = 0.11 eV and ∆̄abs = 0.09 eV in the aug-cc-pVDZ’
and aug-cc-pVTZ’ basis sets, respectively) and the max-
imum absolute errors (∆̄abs = 0.28 eV and ∆̄abs = 0.23



9

TABLE I: Statistical analysis of the lowest excitation energy from SNOFLEx calculations compared to conventional CC2 calculations
using the aug-cc-pVDZ’ basis set. The error (∆) is reported in eV for each transition together with the reference excitation energy ωref.

Three different values of τ ′ have been used and are specified in parenthesis in the header of the relevant columns. The mean absolute
error (∆̄abs), the maximum absolute error (∆max), the mean error (∆̄), and the standard deviation (∆std) are also reported.

Molecule ∆(10−3) ∆(10−4) ∆(10−5) ωref

XLI 0.13 0.01 -0.00 4.80
XLII 0.19 0.02 -0.00 4.48
XLIII 0.07 0.00 -0.00 4.06
XLIV 0.10 -0.00 -0.00 2.42
XLV 0.07 -0.00 -0.00 3.70
XLVI 0.11 0.00 -0.00 2.92
XLVII 0.05 -0.00 -0.00 2.52
XLVIII 0.11 0.01 -0.00 3.60
XLIX 0.21 0.00 -0.00 3.94
L 0.05 -0.01 -0.00 3.81
LI 0.04 -0.00 -0.00 2.10
LII 0.05 -0.01 0.00 2.67
LIII 0.07 -0.01 0.00 2.93
LIV 0.07 0.01 -0.00 2.45
LV 0.06 0.01 -0.00 2.33
LVI 0.13 -0.02 -0.00 3.78
LVII 0.07 -0.02 -0.00 3.37
LVIII 0.21 0.01 -0.00 3.44
LIX 0.28 -0.02 -0.01 2.67
LX 0.14 0.00 -0.00 3.85
11-cis-retinal 0.00 -0.01 -0.01 2.14
met-enkephalin 0.14 -0.00 0.00 4.78

∆̄abs 0.11 0.01 0.00 —
∆max 0.28 0.02 0.01 —
∆̄ 0.11 -0.00 -0.00 —
∆std 0.07 0.01 0.00 —

TABLE II: Statistical analysis of the lowest excitation energy from SNOFLEx calculations compared to conventional CC2 calculations
using the aug-cc-pVTZ’ basis set. The error (∆) is reported in eV for each transition together with the reference excitation energy ωref.
Three different values of τ ′ have been used and are specified in parenthesis in the header of the relevant columns. The mean absolute

error (∆̄abs), the maximum absolute error (∆max), the mean error (∆̄), and the standard deviation (∆std) are also reported.

Molecule ∆(10−3) ∆(10−4) ∆(10−5) ωref

XLI 0.12 0.00 -0.00 4.77
XLII 0.18 0.01 -0.00 4.45
XLIII 0.05 -0.01 -0.00 4.04
XLIV 0.09 -0.01 -0.00 2.42
XLV 0.07 -0.01 -0.00 3.67
XLVI 0.11 -0.00 -0.00 2.90
XLVII 0.03 -0.01 -0.00 2.51
XLVIII 0.09 0.01 -0.00 3.57
XLIX 0.20 -0.01 -0.01 3.93
L 0.02 -0.02 -0.00 3.78
LI 0.02 -0.01 -0.00 2.08
LII 0.03 -0.02 -0.00 2.65
LIII 0.05 -0.02 -0.00 2.92
LIV 0.06 -0.00 -0.00 2.42
LV 0.05 0.00 -0.00 2.32
LVI 0.12 -0.02 -0.00 3.77
LVII 0.04 -0.04 -0.01 3.37
LVIII 0.17 -0.01 -0.01 3.44
LIX 0.23 -0.05 -0.02 2.66
LX 0.13 0.00 -0.00 3.83
11-cis-retinal -0.03 -0.03 -0.01 2.12
met-enkephalin 0.13 -0.01 -0.00 4.76

∆̄abs 0.09 0.01 0.00 —
∆max 0.23 0.05 0.02 —
∆̄ 0.09 -0.01 -0.00 —
∆std 0.07 0.02 0.00 —
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TABLE III: Speed-ups of SNOFLEx calculations compared to full
calculations (Tfull/TSNOFLEx for the molecules in the test set

using the aug-cc-pVDZ’ basis and different values of τ ′.

Molecule τ ′ = 10−3 τ ′ = 10−4 τ ′ = 10−5

XLI 1.5 1.1 0.9
XLII 2.1 1.4 0.8
XLIII 1.5 1.3 1.0
XLIV 2.0 1.2 0.9
XLV 1.5 1.1 1.0
XLVI 1.6 1.1 1.0
XLVII 1.8 1.0 0.9
XLVIII 3.8 2.0 1.3
XLIX 1.5 1.2 1.0
L 3.2 1.9 1.3
LI 2.8 1.5 1.0
LII 2.2 1.7 1.2
LIII 2.8 1.7 1.3
LIV 2.1 1.3 1.0
LV 2.1 1.3 1.0
LVI 3.5 2.0 1.3
LVII 3.1 1.4 1.0
LVIII 3.0 1.8 1.3
LIX 2.6 1.3 1.3
LX 3.3 1.9 1.3
11-cis-retinal 2.9 1.9 1.4
met-enkephalin 96.2 54.7 33.5

Max. 96.2 54.7 33.5
Min. 1.5 1.0 0.8
Meana 2.4 1.5 1.1

a Met-enkephalin was excluded from the test set

eV) indicate that the results obtained with τ ′ = 10−3 can
have errors as large as the typical deviations of CC2 exci-
tation energies from FCI results.48,69,70 SNOFLEx with
τ ′ = 10−3 should thus only be used for very preliminary
investigations.

Finally, when SNOFLEx is applied with τ ′ = 10−5,
very accurate results are obtained with virtually no errors
compared to conventional CC2 results, (∆̄abs = 0.00 eV
with both aug-cc-pVDZ’ and aug-cc-pVTZ’ basis sets).
Such calculations can thus be performed to confirm the
quality of the SNOFLEx results obtained with τ ′ = 10−4.
In the following, we will refer to the τ ′ values of 10−3,
10−4 and 10−5 as loose, standard, and tight, respectively.

It is also interesting to note that the conventional CC2
results for molecules XLI to LX in Tables I and II differ
from the aug-cc-pVTZ results in Ref. 59 by at most 0.03
eV and 0.004 eV for the aug-cc-pVDZ’ and aug-cc-pVTZ’
basis sets, respectively. It is thus seen that the removal
of diffuse basis functions on hydrogen atoms has a negli-
gible effect on the calculated excitation energies, but also
that the aug-cc-pVDZ’ basis is sufficient to obtain a good
description of the considered transitions. Triple-ζ qual-
ity basis sets and higher are however generally needed to
describe higher lying excited states.48

In order to analyze the computational cost of
SNOFLEx compared to conventional CC2 calculations,
we have reported speed-ups in Tables III and IV for all
the molecules in the test set with the loose, standard, and
tight thresholds, as described previously. The speed-ups

TABLE IV: Speed-ups of SNOFLEx calculations compared to full
calculations (Tfull/TSNOFLEx for the molecules in the test set

using the aug-cc-pVTZ’ basis and different values of τ ′.

Molecule τ ′ = 10−3 τ ′ = 10−4 τ ′ = 10−5

XLI 1.3 1.1 0.9
XLII 1.9 1.4 1.1
XLIII 1.7 1.4 1.1
XLIV 1.8 1.3 0.9
XLV 1.4 1.1 1.0
XLVI 1.5 1.2 1.0
XLVII 1.6 1.1 1.0
XLVIII 3.6 1.9 1.3
XLIX 1.3 1.1 1.0
L 3.0 1.9 1.2
LI 2.4 1.5 1.1
LII 2.2 1.5 1.2
LIII 2.4 1.7 1.3
LIV 2.1 1.4 1.1
LV 2.0 1.3 1.0
LVI 2.4 1.7 1.2
LVII 2.5 1.3 0.9
LVIII 2.5 1.6 1.3
LIX 2.0 1.5 1.1
LX 3.1 2.0 1.4
11-cis-retinal 2.5 1.9 1.4
met-enkephalin 63.2 27.9 10.9

Max. 63.2 27.9 10.9
Min. 1.3 1.1 0.9
Meana 2.2 1.5 1.1

a Met-enkephalin was excluded from the test set

are calculated from,

speed-up =
Tfull

TSNOFLEx
, (35)

where Tfull corresponds to the time spent in the correla-
tion part of a conventional CC2 calculation, (i.e., deter-
mination of the CC2 ground state amplitudes and solu-
tion of the Jacobian eigenvalue problem in the complete
canonical basis), while TSNOFLEx corresponds to the sum
of the time spent in the generation of the CIS(D’)-NTOs
(Section II C and appendix A) and the time spent in the
calculation of the CC2 excitation energies using the same
algorithms as for the conventional calculation but in the
restricted XOS determined by τ ′.

The test set used in this discussion consists of 21
medium-sized chromophores with highly delocalized elec-
tronic structures—which represent difficult but very in-
teresting targets for approximated CC methods—as well
as the met-enkephalin molecule with a well localized tran-
sition (see Fig. 2). From Tables III and IV, we see that—
for the chromophores only—an average speed-up of 1.5 is
observed for both the aug-cc-pVDZ’ and aug-cc-pVTZ’
basis sets, with the standard threshold. This is already
quite impressive due to the limited size and the delocal-
ized character of the considered systems. The speed-ups
are of course larger (smaller) for the loose (tight) thresh-
old. We note that even with the tight threshold, only very
few transitions lead to an effective slow-down, which is
then due to the overhead used for the generation of the
CIS(D’)-NTOs. Finally, the results for met-enkephalin
demonstrate that huge speeds-ups are observed when
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FIG. 6: Lowest excitation energy of a series of solvated formamide
with an increasing number of water molecules using the

aug-cc-pVDZ’ basis set. CC2-SNOFLEx results are reported
using the loose, standard, and tight thresholds. For comparison

the conventional CIS and CC2 (full) results are also reported.

the transition of interested is local (54.7 and 27.9 with
the standard threshold for the aug-cc-pVDZ’ and aug-cc-
pVTZ’ basis sets, respectively).

All in all, the results presented in Tables I to IV, are
very encouraging, both in terms of accuracy and compu-
tational savings.

C. Formamide-water clusters

In order to investigate the potential of SNOFLEx for
large molecular systems, we now consider the lowest ex-
citation energy in a series of solvated formamide clus-
ters with an increasing number of water molecules. All
the calculations have been performed using the aug-cc-
pVDZ’ basis set and the SNOFLEx strategy has been
applied with the loose, standard, and tight thresholds
for clusters including up to 144 water molecules (4836
basis functions). Reference calculations using a conven-
tional CC2 implementation have also been performed for
clusters including up to 44 water molecules (1536 basis
functions).

In Fig. 6, we have plotted the convergence of the ex-
citation energy as a function of the number of water
molecules included in the cluster using the loose, stan-
dard, and tight SNOFLEx thresholds. The excitation
energies obtained with conventional CIS and CC2 algo-
rithms are also reported. Fig. 6 shows that the solvation
effects results in a blueshift of ' 0.8 eV at the CIS level,
while the blueshift is lowered to around 0.5 eV at the CC2
level. Most of the solvation effects are already included
with only 12 water molecules and adding more waters
results in small oscillations of around 0.03 eV, which are
already relatively well described without correlation ef-
fects (CIS curve in Fig. 6). We note that the observed
solvatochromatic shift is consistent with Ref. 61, but that
a conformational sampling is required to obtain reliable
results.
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FIG. 7: Computational wall-time spent in the calculation of the
lowest excitation energy of a series of formamide-water clusters of
increasing size using the aug-cc-pVDZ’ basis set. CIS: time spent

in the HF ground state and CIS excitation energy calculations
(prior the SNOFLEx or full CC2 calculation).

Loose/standard/tight: time spent in the correlated part of the
SNOFLEx algorithm (generation of the CIS(D’)-NTOs and

solution of the CC2 equations in the XOS). Full: solution of the
CC2 equations in the full canonical basis. All calculations were
performed on a single IBM iDataPlex dx360 M4 compute-node,

with 2 octocore Intel E5-2670 CPUs @ 2.67 GHz and 64 GB
memory.

Regarding the accuracy of the SNOFLEx calculations,
as described in Section III B, the results obtained with
the standard and tight thresholds are effectively of CC2
quality, while the loose threshold leads to much larger er-
rors (' 0.4 eV). However, it is notable that the main cor-
relation effect (i.e., a lowering of the blueshift compared
to the CIS result) is described reasonably well already
with the loose threshold.

In order to analyze the performance of the SNOFLEx
strategy compared to a conventional algorithm, we have
reported timings for the CIS and the correlated parts
of the calculations in Fig. 7. For SNOFLEx, the time
plotted includes the generation of the CIS(D’)-NTOs and
the solution of the CC2 equations in the restricted XOS,
while only the time for the solution of the CC2 equations
is considered for the full calculation. Fig. 7 shows that
the SNOFLEx calculations (with all three thresholds) are
systematically faster than the conventional CC2 calcula-
tions. For example, for the cluster containing 44 water
molecules, the correlated part of the standard SNOFLEx
calculation is 53 times faster than the correlated part
of a conventional CC2 calculation. Furthermore, the
SNOFLEx calculations can be carried out for molecular
systems that are out of reach of conventional CC2 code
(4836 basis functions).

While the correlated part generally dominates conven-
tional CC2 calculations (“full” curve in Fig. 7), this is
not the case for SNOFLEx. The time spent in the corre-
lated part of the calculations with the loose and standard
thresholds is in fact negligible compared with time spent
in the CIS optimization. Thus, with the standard thresh-
old, CC2 excitation energies are effectively obtained with
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the computational cost of a CIS calculation. With the
tight threshold, however, the time spent in the corre-
lated part of the calculation is similar to the time spent
in the CIS optimization, and it therefore represents a sig-
nificant part of the total time. Nonetheless, Fig. 7 shows
that even with the tight threshold, huge savings are ob-
tained compared to conventional CC2 calculations.

IV. CONCLUSION

In this work we have introduced a new method for the
calculation of CC excitation energies on large molecules
entitled SNOFLEx. It relies on a generalization of the
concept of NTOs to include correlation effects. The cor-
related NTOs denoted as CIS(D’)-NTOS are obtained
based on an approximation to the CIS(D) model and
their generation formally scales cubically with the sys-
tem size. Once the CIS(D’)-NTOs have been generated,
a conventional CC excitation energy calculation can be
performed in a reduced orbital space obtained by dis-
carding a subset of occupied and virtual CIS(D’)-NTOs
with low eigenvalues. We have introduced the loose, stan-
dard, and tight thresholds to generate the reduced or-
bital space, which ultimately define the precision of a
SNOFLEx calculation compared to a conventional CC2
calculation.

The SNOFLEx algorithm has been tested for the calcu-
lation of CC2 excitation energies on a set of 22 medium-
sized molecules resulting in a mean absolute error of
0.01 eV with the standard threshold. Even though the
molecules considered were of limited size, significant com-
putational savings were systematically obtained. These
results have been confirmed by applying SNOFLEx to a
series of formamide-water clusters of increasing size (up
to 4836 basis functions) which indicates that our new
scheme allows CC2 excitation energies to be determined
at the cost a CIS calculation and thus further extend the
capabilities of the CC2 model.

One of the main advantages of SNOFLEx compared
to other reduced scaling methods for the calculation of
CC excitation energies is that it does not rely explic-
itly on local approximations. Computational savings are
therefore obtained for both local and delocalized elec-
tronic transitions. The computational savings and the
precision of the calculated excitation energies are defined
through a single threshold via the concept of CIS(D’)-
NTOs. This also implies that only electronic transi-
tions that are described at the CIS level of theory can
be addressed (single-replacement dominated transitions).
However, these include most transitions of interest in typ-
ical organic and biological molecules. We also note that
the presented developments are not specific to the CC2
model, and more accurate CC models might also benefit
from using the SNOFLEx scheme.

Appendix A: Algorithm for generating CIS(D’) density
matrices

In this appendix we present an algorithm for calculat-
ing the CIS(D’) density matrices in Eqs. (26). First, we
note that the two-electron integrals entering the evalua-
tion of the doubles excitation vectors in Eqs. (23) may
be written as,

(Aī|Bj)CIS = (Āi|Bj) + (Aī|Bj) + (Ai|B̄j) + (Ai|Bj̄) (A1a)

(aI |̄bJ)CIS = (āI|bJ) + (aĪ|bJ) + (aI|b̄J) + (aI|bJ̄) (A1b)

where we have suppressed the CIS superscript on the
right-hand side of the equation and the barred indices
are transformed with the Λ̄CIS matrices in Eqs. (21),
while the non-barred indices refer to standard MOs in
the canonical basis (lowercase) or in the CIS-NTO basis
(uppercase), e.g.,

(Āi|Bj) =
∑

αβγδ

Λ̄CIS
αA CβiCγBCδj(αβ|γδ). (A2)

We employ the RI approximation to reduced the cost of
the generation of four-center integrals in Eq. (A1). For
example, the integral in Eq. (A2) may be written as,

(Āi|Bj) =
∑

Γ̃

(Āi|Γ̃)(Γ̃|Bj) (A3)

Here, |Γ̃) is a Löwdin orthonormalized auxiliary basis
function,

|Γ̃) =
∑

Γ

(S−1/2)ΓΓ̃|Γ) (A4)

where |Γ) is an auxiliary basis function and S is the as-
sociated overlap matrix. It then follows that the doubles
excitation vectors in Eqs. (23) may be written as,

R
CIS(D’)
AiBj =

∑
Γ̃ P

AB
ij

[
(Āi|Γ̃)(Γ̃|Bj) + (Aī|Γ̃)(Γ̃|Bj)

]

εi − FAA + εj − FBB + ωCIS
(A5a)

R
CIS(D’)
aIbJ =

∑
Γ̃ P

ab
IJ

[
(āI|Γ̃)(Γ̃|bJ) + (aĪ|Γ̃)(Γ̃|bJ)

]

FII − εa + FJJ − εb + ωCIS
(A5b)

where the action of the permutation operator is defined
in Eq. (17). From Eqs. (A5) we see that the following in-
tegrals are required to evaluate the doubles contributions
to the hole density matrix in Eq. (26a),

• (Γ̃|A′i), (Γ̃|A′ī), (Γ̃|Ā′i)

while the particle density matrix in Eq. (26b) can be
determined using the following integrals,

• (Γ̃|aI ′), (Γ̃|āI ′), (Γ̃|aĪ ′)

We recall that the primed indices denote a subset of or-
bitals of dimension Z as defined by Eq. (25). In the
following analysis, we assume that Z is independent of
the system size for a given type of electronic transition.

In our current implementation we first calculate the six
integrals listed above and store them in memory, but they
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TABLE V: Generation of two-electron RI integrals required for constructing CIS(D’) hole and particle density matrices. Batching of
integrals and reordering of tensors have been omitted for clarity.

Step Operation Prefactor Scaling

1 Calculate integrals (Γ|αβ) O(NΓN
2
α)

2

(Γ|A′β)←∑
α CαA′(Γ|αβ)

Z O(NΓN
2
α)

(Γ|Ā′β)←∑
α Λ̄CIS

αA′(Γ|αβ)
(Γ|αI ′)←∑

β CβI′(Γ|αβ)

(Γ|αĪ ′)←∑
β Λ̄CIS

βI′ (Γ|αβ)

3
(Γ|A′i)←∑

β Cβi(Γ|A′β)
Z O(NΓNαO)(Γ|A′ ī)←∑

β Λ̄CIS
βi (Γ|A′β)

(Γ|Ā′i)←∑
β Cβi(Γ|Ā′β)

4
(Γ|aI ′)←∑

α Cαa(Γ|αI ′)
Z O(NΓNαV )(Γ|āI ′)←∑

α Λ̄CIS
αa (Γ|αI ′)

(Γ|aĪ ′)←∑
α Cαa(Γ|αĪ ′)

5
(Γ̃|A′i)←∑

Γ(S−1/2)ΓΓ̃(Γ|A′i)
Z O(N2

ΓO)(Γ̃|A′ ī)←∑
Γ(S−1/2)ΓΓ̃(Γ|A′ ī)

(Γ̃|Ā′i)←∑
Γ(S−1/2)ΓΓ̃(Γ|Ā′i)

6
(Γ̃|aI ′)←∑

Γ(S−1/2)ΓΓ̃(Γ|aI ′)
Z O(N2

ΓV )(Γ̃|āI ′)←∑
Γ(S−1/2)ΓΓ̃(Γ|āI ′)

(Γ̃|aĪ ′)←∑
Γ(S−1/2)ΓΓ̃(Γ|aĪ ′)

could of course be written to disk if necessary. The con-
struction of the integrals is detailed in Table V. The first
step is the construction of the (Γ|αβ) integrals, which for-
mally scales as O(NΓN

2
α) where Nα and NΓ denote the

number of atomic and auxiliary basis functions, respec-
tively. However, this scaling is effectively only quadratic
with system size if efficient integral screening techniques
are employed. In step 2, one of the AO indices is trans-
formed to a reduced MO index of dimension Z, which
is generally much smaller than the occupied and virtual
dimensions. It is therefore very important that this re-
duced index is transformed first, and these steps scale as
O(NΓN

2
α). In step 3(4), the second AO index is trans-

formed to an occupied (virtual) index leading to a formal
scaling of O(NΓNαO) (O(NΓNαV )). Finally, in steps 5
and 6 the auxiliary index is transformed with the S−1/2

matrix to provide the desired three-center integrals listed
above. This last steps scales as O(N2

ΓO) or O(N2
ΓV ) de-

pending on the type of integrals. Since the reduced di-
mension Z is considered to be independent of the system
size, the generation of the integrals in Table V thus scales
cubically with the system size.

Once the integrals have been generated from Ta-
ble V, the density matrices can be evaluated according to
Eq. (26). The algorithm for the hole and particle density
matrices are given in Algorithms 1 and 2, respectively. It
is seen that these algorithms formally are O(N3) scaling,
assuming again that the reduced dimension Z is indepen-
dent of system size.

All in all, we conclude that the generation of the hole
and particle density matrices—according to Table V and

Algorithms 1 and 2—scales cubically with the size of the
molecular system for a given type of electronic transition.
The prefactor depends on the dimension of the reduced
set of orbitals, Z, which depends on the requested pre-
cision (τ ′) and the type of electronic transition under
consideration.
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1: X
CIS(D’)
ij =

∑
aR

CIS
ai R

CIS
aj

2: for A′ = 1, Z do
3: for B′ = 1, Z do
4: for k = 1, O do
5: for l = 1, O do
6: for Γ̃ = 1, NΓ do

7: (A′ l̄|B′k)+ = PA
′B′

lk

[
(Āl′|Γ̃)(Γ̃|B′k) + (Al̄|Γ̃)(Γ̃|B′k)

]

8: end for Γ̃
9: RA′lB′k = (A′ l̄|B′k)/(εl − FA′A′ + εk − FB′B′ + ωCIS)

10: end for l
11: for i = 1, O do
12: for j = 1, O do

13: X
CIS(D’)
ij + = 1

2
RA′iB′kRA′jB′k

14: end for j
15: end for i
16: end for k
17: end for B′

18: end for A′

ALG. 1: Construction of the hole density matrix, XCIS(D’). The necessary two-electron integrals have been determined using Table V.

1: Y
CIS(D’)
ab =

∑
iR

CIS
ai R

CIS
bi

2: for I ′ = 1, Z do
3: for J ′ = 1, Z do
4: for c = 1, V do
5: for d = 1, V do
6: for Γ̃ = 1, NΓ do
7: (dI ′̄|cJ ′)+ = P dcI′J′

[
(d̄I ′|Γ̃)(Γ̃|cJ ′) + (dĪ|Γ̃)(Γ̃|cJ ′)

]

8: end for Γ̃
9: RdI′cJ′ = (dI ′̄|cJ ′)/(FI′I′ − εd + FJ′J′ − εc + ωCIS)

10: end for d
11: for a = 1, V do
12: for b = 1, V do

13: Y
CIS(D’)
ab + = 1

2
RaI′cJ′RbI′cJ′

14: end for b
15: end for a
16: end for c
17: end for J ′

18: end for I ′

ALG. 2: Construction of the particle density matrix, YCIS(D’). The necessary two-electron integrals have been determined using Table V.
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